SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salste Lotta) "

Sökning: WFRF:(Salste Lotta)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkblom, Carina, et al. (författare)
  • Estrogenic and androgenic effects of municipal wastewater effluent on reproductive endpoint biomarkers in three-spined stickleback (Gasterosteus aculeatus)
  • 2009
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley-Blackwell. - 0730-7268 .- 1552-8618. ; 28:5, s. 1063-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Municipal wastewater treatment plants have been associated with the release of endocrine-disrupting chemicals, which consequently lead to alterations of reproductive function in aquatic organisms. The three-spined stickleback (Gasterosteus aculeatus) has quantifiable biomarkers for assessment of both estrogen (vitellogenin) and androgen (spiggin) activity, which makes this species very valuable in the research of endocrine disruption. The estrogenic and androgenic biomarkers were used for evaluating exposure effects of municipal wastewater effluent. We evaluated the effects of 17alpha-ethinylestradiol (EE2), 17alpha-methyltestosterone (MT), and wastewater effluents on induction of vitellogenin and spiggin production, gonadosomatic index, hepatosomatic index, nephrosomatic index, plasma steroid levels, and histopathology. Adult female and male sticklebacks were exposed to 20 ng/L of EE2, 10 microg/L of MT, and wastewater effluent (10, 50, and 80% of original concentration) in a flow-through system for an exposure of one week and an extended exposure of four weeks. Chemical analyses of the steroids were done for verification of exposure concentrations and presence in the used wastewater. Our results show that municipal wastewater effluent exerts estrogenic action on three-spined stickleback as observed by elevated vitellogenin levels in exposed fish, corresponding to the effect seen in fish exposed to EE2. Furthermore, wastewater and EE2 exerted similar histopathological effects on testis of exposed fish. Although domestic effluent is suspected to have a high content of natural androgens, no obvious androgenic effect of wastewater was observed in the present study.
  •  
2.
  • Khalaf, Hazem, et al. (författare)
  • In vitro analysis of inflammatory responses following environmental exposure to pharmaceuticals and inland waters
  • 2009
  • Ingår i: Science of the Total Environment. - Amsterdam : Elsevier. - 0048-9697 .- 1879-1026. ; 407:4, s. 1452-1460
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmaceuticals are regularly released into the environment; in particular non-steroidalanti-inflammatory drugs (NSAIDs) and antibiotics. Erythromycin, naproxen, furosemideand atenolol are reported to be stable for up to 1 year in the environment, which increasesthe risk for accumulation. In the present study we have measured the occurrence andconcentration of pharmaceuticals in river Viskan (Jössabron) downstream of a sewagetreatment plant in Borås, Sweden. Pharmaceuticals and water samples were tested forpotential human risk by evaluating inflammatory responses (NF-κB and AP-1) using humanT24 bladder epithelial cells and Jurkat T-cells. NF-κB activity in T24 cells was significantlyreduced by all NSAIDs analysed (diclofenac, ketoprofen, naproxen, ibuprophen anddextropropoxyphene), but also by trimethoprim, using environmentally relevantconcentrations. NF-κB and AP-1 activation was further analysed in response to watersamples collected from different locations in Sweden. Dose-dependent down-regulation ofAP-1 activity in Jurkat cells was observed at all locations. At two locations (Jössabron andAlmenäs) down-regulation of NF-κB was observed. In contrast, the NF-κB response waspotentiated by exposure to water from both locations following activation of NF-κB bytreatment with heat-killed Escherichia coli. To determine the involvement ofpharmaceuticals in the responses, T24 cells were exposed to the pharmaceutical mixture,based on the determined levels at Jössabron. This resulted in reduction of the NF-κBresponse following exposure to the pharmaceutical mixture alone while no potentiationwas observed when cells were co-exposed to heat killed E. coli and pharmaceuticals. Theobtained results demonstrate that the identified pharmaceuticals affect the inflammatoryresponses and furthermore indicate the presence of unknown substance(s) with the abilityto potentiate inflammatory responses
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy