SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sandegren Linus docent) "

Search: WFRF:(Sandegren Linus docent)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fagerström, Anna, 1980- (author)
  • Long-term molecular epidemiology of extended-spectrum β-lactamase producing Escherichia coli in a low-endemic setting
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Escherichia coli is a commensal inhabitant in the gastro-intestinal tract of humans and animals but it is also the most common bacterial species causing urinary tract infection, which ranges in severity from distal cystitis to urosepsis and septic shock. During the past decades, the prevalence of antibiotic resistant E. coli has increased worldwide. Extended-spectrum β-lactamases (ESBL) causes resistance to β-lactam antibiotics, the most widely used class of antibiotics. The genes encoding ESBL, bla, are usually carried on conjugative plasmids, which can be transferred between different bacterial lineages and different species. These plasmids frequently also carry resistance genes to additional antibiotic classes, and ESBL-producing E. coli are therefore often multidrug-resistant. The aim of this thesis was to describe the long-term molecular epidemiology of ESBL-producing E. coli in Örebro County during the time when they first started to emerge. In addition, potential transmission to the environment was investigated by performing a comparative analysis on ESBL-producing E. coli isolated from patients and from the aquatic environment in Örebro city. In general, the E. coli population was genetically diverse, but the pandemic lineage ST131, first identified in 2004, appears to have been responsible for the dramatic increase of CTX-M-15-producing E.coli observed during the late 2000s. CTX-M-15 was the most prevalent ESBL-type followed by CTX-M-14 and these genes were mainly found on plasmids belonging to the IncF or IncI1 families. Continuous horizontal transmission of IncI1 ST31 and ST37 plasmids between diverse E. coli lineages have also contributed to the dissemination of blaCTX-M-15 in Örebro County. Extended spectrum β-lactamase-producing E. coli were found to be common in the aquatic environment in Örebro city and E. coli lineages genetically similar to those causing infections in humans were present in environmental waters indicating that transmission of ESBL-producing E. colifrom humans to the aquatic environment likely has occurred.
  •  
2.
  • Linkevičius, Marius, 1985- (author)
  • Evolution and Mechanisms of Tigecycline Resistance in Escherichia coli
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • Antibiotic resistance is an ongoing global medical crisis and we are in great need of new antibacterial agents to combat rapidly emerging resistant pathogens. Tigecycline is one of few drugs that have been introduced into medicine during the last two decades. It is a broad-spectrum third generation tetracycline that is active against multidrug-resistant bacteria that cause complicated infections.In this thesis I examined the development of tigecycline resistance in Escherichia coli and associated in vitro and in vivo fitness effects. Selections of spontaneous E. coli mutants revealed relatively high accumulation rates of changes in the multidrug efflux system AcrAB-TolC regulation network and in heptose biosynthesis and transport pathways important for lipopolysaccharide (LPS) synthesis. Both groups of mutations led to reduced susceptibility to tigecycline and slower growth compared to the wild-type bacteria. Additional in vitro fitness assays and in vivo competitions showed that LPS mutants were less fit than efflux mutants, providing a possible explanation for why up-regulation of multidrug efflux pumps is the main tigecycline resistance mechanism reported in clinical isolates.Tigecycline was designed to evade the two most common tetracycline resistance mechanisms conferred by Tet proteins, efflux and ribosomal protection. However, tigecycline is a substrate for the tetracycline modifying enzyme Tet(X). Screening of Tet protein mutant libraries showed that it is possible to select Tet mutants with minimal inhibitory concentrations of tigecycline that reach clinically relevant levels. Mutations in Tet proteins that permitted a better protection from tigecycline frequently exhibited reduced activity against earlier generations of tetracyclines, except for the Tet(X) enzyme mutants, which were better at inactivating all tested tetracyclines. This is particularly worrisome because different variants of Tet(X) have recently spread to multidrug-resistant pathogens through horizontal gene transfer. Therefore, Tet(X) mutants with improved activity threaten the medical future of tetracyclines.Multidrug resistance is easily disseminated through horizontally spreading conjugative plasmids. pUUH239.2 is an example of a successful conjugative plasmid that caused the first clonal outbreak of extended spectrum β-lactamase-producing Klebsiella pneumoniae in Scandinavia. This plasmid was formed after rearrangements between two different plasmid backbones and it carries resistance genes to multiple antibiotic classes, heavy metals, and detergents.
  •  
3.
  • Rajer, Fredrika (author)
  • Multi-Resistance Plasmids : Fitness Costs, Dynamics and Evolution
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Antibiotic resistance is an escalating problem, not only due to less desirable treatment options and outcome, but also due to the economic burden to health care caused by resistant pathogens. Since the process of developing new antibiotics is slow, we need to carefully consider the usage of the antibiotics still available. Therefore it is of importance to minimize the development and spread of resistant pathogens. To do so, we need a better understanding of the mechanisms and dynamics underlying the evolution of highly resistant bacteria.In this thesis I have investigated one of the major drivers of resistance gene dissemination in Gram-negative bacteria, namely multi-resistance plasmids. We show that multi-resistance plasmids display a dynamic behavior in vivo, where genes can be readily acquired and lost again. Additionally, plasmids can be shared amongst different bacteria, especially in environments such as the human gut. Interestingly, some resistance plasmids confer a fitness disadvantage to their host displayed by decreased growth rate in absence of antibiotics. We could elucidate that two resistance genes of the multi-resistance plasmid pUUH239.2 were the cause of the lowered growth rate, namely blaCTX-M-15 and tetR/A. In contrast, other resistance genes on the plasmid were cost-free even when overexpressed and likely enable persistence in the bacterial population even under non-selective conditions. Lastly, we studied how the presence of several β-lactamase genes on a plasmid affects treatment with different combinations of β-lactam/β-lactamase inhibitors. We found that an efficient mechanism for bacteria to overcome high levels of antibiotics was by amplification of plasmid-borne resistance genes. This mechanism works as a stepping-stone for additional mutations giving rise to high-level resistance.With this work we provide insight into the mechanisms underlying resistance evolution and dissemination due to multi-resistance plasmids. Plasmids enable fast dissemination of multiple resistance genes and therefore simultaneously disable multiple treatment options. Examining the effects of resistance genes and antibiotics on strains carrying multi-resistance plasmids will enable us to understand what factors assist or inhibit plasmid spread. Hopefully, this will aid us in treatment design to prevent resistance development to effective antibiotics and have implications for resistance surveillance as well as prediction.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view