SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sane P V) "

Sökning: WFRF:(Sane P V)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ivanov, A G, et al. (författare)
  • Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.)
  • 2001
  • Ingår i: Planta. - 0032-0935 .- 1432-2048. ; 213:4, s. 575-585
  • Tidskriftsartikel (refereegranskat)abstract
    • As shown before [C. Ottander et al. (1995) Planta 197:176-183], there is a severe inhibition of the photosystem (PS) II photochemical efficiency of Scots pine (Pinus sylvestris L.) during the winter. In contrast, the in vivo PSI photochemistry is less inhibited during winter as shown by in vivo measurements of DeltaA(820)/Delta (820) (P700(+)). There was also an enhanced cyclic electron transfer around PSI in winter-stressed needles as indicated by 4-fold faster reduction kinetics of P700(+). The differential functional stability of PSII and PSI was accompanied by a 3.7-fold higher intersystem electron pool size, and a 5-fold increase in the stromal electron pool available for P700(+) reduction. There was also a strong reduction of the QB band in the thermoluminescence glow curve and markedly slower Q-A re-oxidation in needles of winter pine, indicating an inhibition of electron transfer between QA and QB. The data presented indicate that the plastoquinone pool is largely reduced in winter pine, and that this reduced state is likely to be of metabolic rather than photochemical origin. The retention of PSI photochemistry, and the suggested metabolic reduction of the plastoquinone pool in winter stressed needles of Scots pine are discussed in terms of the need for enhanced photoprotection of the needles during the winter and the role of metabolically supplied energy for the recovery of photosynthesis from winter stress in evergreens.
  •  
2.
  • Ivanov, A G, et al. (författare)
  • Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence
  • 2002
  • Ingår i: Planta. - : Springer Science and Business Media LLC. - 0032-0935 .- 1432-2048. ; 215:3, s. 457-465
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential of photosynthesis to recover from winter stress was studied by following the thermoluminescence (TL) and chlorophyll fluorescence changes of winter pine needles during the exposure to room temperature (20 degreesC) and an irradiance of 100 mumol m(-2) s(-1). TL measurements of photosystem 11 (PSII) revealed that the S(2)Q(B)(-) charge recombinations (the B-band) were shifted to lower temperatures in winter pine needles, while the S(2)Q(A)(-) recombinations (the Q-band) remained close to 0 degreesC. This was accompanied by a drastically reduced (65%) PSII photochemical efficiency measured as F-v/F-m and a 20-fold faster rate of the fluorescence transient from F-o to F, as compared to summer pine. A strong positive correlation between the increase in the photochemical efficiency of PSII and the increase in the relative contribution of the B-band was found during the time course of the recovery process. The seasonal dynamics of TL in Scots pine needles studied under field conditions revealed that between November and April, the contribution of the Q- and B-bands to the overall TL emission was very low (less than 5%). During spring, the relative contribution of the Q- and B-bands, corresponding to charge recombination events between the acceptor and donor sides of PSII, rapidly increased, reaching maximal values in late July. A sharp decline of the B-band was observed in late summer, followed by a gradual decrease, reaching minimal values in November. Possible mechanisms of the seasonally induced changes in the redox properties Of S-2/S(3)Q(B)(-) recombinations are discussed. It is proposed that the lowered redox potential Of Q(B) in winter needles increases the population Of Q(A)(-). thus enhancing the probability for non-radiative P680(+) Q(A)(-) recombination. This is suggested to enhance the radiationless dissipation of excess light within the PSII reaction center during cold acclimation and during cold winter periods.
  •  
3.
  • Sane, P V, et al. (författare)
  • A transient exchange of the photosystem II reaction center protein D1 : 1 with D1 : 2 during low temperature stress of Synechococcus sp PCC 7942 in the light lowers the redox potential of Q(B)
  • 2002
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 277:36, s. 32739-32745
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon exposure to low temperature under constant light conditions, the cyanobacterium Synechococcus sp. PCC 7942 exchanges the photosystem II reaction center D1 protein form I (D1:1) with D1 protein form 2 (D1:2). This exchange is only transient, and after acclimation to low temperature the cells revert back to D1:1, which is the preferred form in acclimated cells (Campbell, D., Zhou, G., Gustafsson, P., Oquist, G., and Clarke, A. K. (1995) EMBO J. 14, 5457-5466). In the present work we use thermoluminescence to study charge recombination events between the acceptor and donor sides of photosystem II in relation to D1 replacement. The data indicate that in cold-stressed cells exhibiting D1:2, the redox potential of Q(B) becomes lower approaching that of Q(A). This was confirmed by examining the Synechococcus sp. PCC 7942 inactivation mutants R2S2C3 and R2K1, which possess only D1:1 or D1:2, respectively. In contrast, the recombination of Q(A)(-) with the S-2 and S-3 states did not show any change in their redox characteristics upon the shift from D1:1 to D1:2. We suggest that the change in redox properties of Q(B) results in altered charge equilibrium in favor of Q(A). This would significantly increase the probability of Q(A)(-) and P680(+) recombination. The resulting non-radiative energy dissipation within the reaction center of PSII may serve as a highly effective protective mechanism against photodamage upon excessive excitation. The proposed reaction center quenching is an important protective mechanism because antenna and zeaxanthin cycle-dependent quenching are not present in cyanobacteria. We suggest that lowering the redox potential of Q(B) by exchanging D1:1 for D1:2 imparts the increased resistance to high excitation pressure induced by exposure to either low temperature or high light.
  •  
4.
  • Sane, P V, et al. (författare)
  • Changes in the redox potential of primary and secondary electron-accepting quinones in photosystem II confer increased resistance to photoinhibition in low-temperature-acclimated arabidopsis
  • 2003
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 132:4, s. 2144-2151
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure of control (non-hardened) Arabidopsis leaves for 2 h at high irradiance at 5 degreesC resulted in a 55% decrease in photosystem II (PSII) photochemical efficiency as indicated by FcFm. In contrast, cold-acclimated leaves exposed to the same conditions showed only a 22degreesC decrease in FupsilonFm. Thermoluminescence was used to assess the possible role(s) of PSII recombination events in this differential resistance to photoinhibition. Thermoluminescence measurements of PSH revealed that S(2)QA(-) recombination was shifted to higher temperatures, whereas the characteristic temperature of the S(2)Q(B)(-) recombination was shifted to lower temperatures in cold-acclimated plants. These shifts in recombination temperatures indicate higher activation energy for the S(2)Q(A)(-) redox, pair and lower activation energy for the S(2)Q(B) redoxpair. This results in an increase in the free-energy gap between P680(+)Q(A)(-) and P680(+)Pheo(-) and a narrowing of the free energy gap between primary and secondary electron-accepting quinones in PSH electron acceptors. We propose that these effects result in an increased population of reduced primary electron-accepting quinone in PSII, facilitating non-radiative P680(+)QA(-) radical pair recombination. Enhanced reaction center quenching was confirmed using in vivo chlorophyll fluorescence-quenching analysis. The enhanced dissipation of excess light energy within the reaction center of PSII, in part, accounts for the observed increase in resistance to high-light stress in cold-acclimated Arabidopsis plants.
  •  
5.
  • Huner, Norman P A, et al. (författare)
  • Photoprotection of Photosystem II: Reaction center quenching versus antenna quenching
  • 2006
  • Ingår i: Photoprotection, Photoinhibition, Gene Regulation and Environment. - : Springer. - 9781402035647 ; , s. 155-174
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Photoprotection, Photoinhibition, Gene Regulation, and Environment examines the processes whereby plants monitor environmental conditions and orchestrate their response to change, an ability paramount to the life of all plants. "Excess light", absorbed by the light-harvesting systems of photosynthetic organisms, is an integrative indicator of the environment, communicating the presence of intense light and any conditions unfavorable for growth and photosynthesis. Key plant responses are photoprotection and photoinhibition. In this volume, the dual role of photoprotective responses in the preservation of leaf integrity and in redox signaling networks modulating stress acclimation, growth, and development is addressed. In addition, the still unresolved impact of photoinhibition on plant survival and productivity is discussed. Specific topics include dissipation of excess energy via thermal and other pathways, scavenging of reactive oxygen by antioxidants, proteins key to photoprotection and photoinhibition, peroxidation of lipids, as well as signaling by reactive oxygen, lipid-derived messengers, and other messengers that modulate gene expression. Approaches include biochemical, physiological, genetic, molecular, and field studies, addressing intense visible and ultraviolet light, winter conditions, nutrient deficiency, drought, and salinity. This book is directed toward advanced undergraduate students, graduate students, and researchers interested in Plant Ecology, Stress Physiology, Plant Biochemistry, Integrative Biology, and Photobiology.
  •  
6.
  • Ivanov, Alexander G, et al. (författare)
  • Acclimation to temperature and irradiance modulates PSII charge recombination.
  • 2006
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793. ; 580:11, s. 2797-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Acclimation of wild type and the chlorina F2 mutant of barley to either high light or low temperature results in a 2- to 3-fold increase in non-photochemical quenching which occurred independently of either energy-dependent quenching (qE), xanthophyll cycle-mediated antenna quenching or state transitions. Results of in vivo thermoluminescence measurements used to address this conundrum indicated that excitation pressure regulates the temperature gap for Click to view the MathML source and Click to view the MathML source charge recombinations within photosystem II reaction centers. This is discussed in terms of photoprotection through non-radiative charge recombination.
  •  
7.
  • Ivanov, Alexander G., et al. (författare)
  • Photosystem II reaction centre quenching : mechanisms and physiological role
  • 2008
  • Ingår i: Photosynthesis Research. - : Springer Netherlands. - 0166-8595 .- 1573-5079. ; 98:1-3, s. 565-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissipation of excess absorbed light energy in eukaryotic photoautotrophs through zeaxanthin- and ΔpH-dependent photosystem II antenna quenching is considered the major mechanism for non-photochemical quenching and photoprotection. However, there is mounting evidence of a zeaxanthin-independent pathway for dissipation of excess light energy based within the PSII reaction centre that may also play a significant role in photoprotection. We summarize recent reports which indicate that this enigma can be explained, in part, by the fact that PSII reaction centres can be reversibly interconverted from photochemical energy transducers that convert light into ATP and NADPH to efficient, non-photochemical energy quenchers that protect the photosynthetic apparatus from photodamage. In our opinion, reaction centre quenching complements photoprotection through antenna quenching, and dynamic regulation of photosystem II reaction centre represents a general response to any environmental condition that predisposes the accumulation of reduced QA in the photosystem II reaction centres of prokaryotic and eukaryotic photoautotrophs. Since the evolution of reaction centres preceded the evolution of light harvesting systems, reaction centre quenching may represent the oldest photoprotective mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy