SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Savchenko Anton) "

Sökning: WFRF:(Savchenko Anton)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Bin, et al. (författare)
  • Delimiting species in Basidiomycota : a review
  • 2021
  • Ingår i: Fungal diversity. - : Springer Nature. - 1560-2745 .- 1878-9129. ; 109:1, s. 181-237
  • Forskningsöversikt (refereegranskat)abstract
    • Species delimitation is one of the most fundamental processes in biology. Biodiversity undertakings, for instance, require explicit species concepts and criteria for species delimitation in order to be relevant and translatable. However, a perfect species concept does not exist for Fungi. Here, we review the species concepts commonly used in Basidiomycota, the second largest phylum of Fungi that contains some of the best known species of mushrooms, rusts, smuts, and jelly fungi. In general, best practice is to delimitate species, publish new taxa, and conduct taxonomic revisions based on as many independent lines of evidence as possible, that is, by applying a so-called unifying (or integrative) conceptual framework. However, the types of data used vary considerably from group to group. For this reason we discuss the different classes of Basidiomycota, and for each provide: (i) a general introduction with difficulties faced in species recognition, (ii) species concepts and methods for species delimitation, and (iii) community recommendations and conclusions.
  •  
2.
  • Abrego, Nerea, et al. (författare)
  • Airborne DNA reveals predictable spatial and seasonal dynamics of fungi
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 631, s. 835-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5.
  •  
3.
  • He, Mao Qiang, et al. (författare)
  • Phylogenomics, divergence times and notes of orders in Basidiomycota
  • 2024
  • Ingår i: Fungal Diversity. - 1560-2745 .- 1878-9129. ; 126, s. 127-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Basidiomycota is one of the major phyla in the fungal tree of life. The outline of Basidiomycota provides essential taxonomic information for researchers and workers in mycology. In this study, we present a time-framed phylogenomic tree with 487 species of Basidiomycota from 127 families, 47 orders, 14 classes and four subphyla; we update the outline of Basidiomycota based on the phylogenomic relationships and the taxonomic studies since 2019; and we provide notes for each order and discuss the history, defining characteristics, evolution, justification of orders, problems, significance, and plates. Our phylogenomic analysis suggests that the subphyla diverged in a time range of 443–490 Myr (million years), classes in a time range of 312–412 Myr, and orders in a time range of 102–361 Myr. Families diverged in a time range of 50–289 Myr, 76–224 Myr, and 62–156 Myr in Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina, respectively. Based on the phylogenomic relationships and divergence times, we propose a new suborder Mycenineae in Agaricales to accommodate Mycenaceae. In the current outline of Basidiomycota, there are four subphyla, 20 classes, 77 orders, 297 families, and 2134 genera accepted. When building a robust taxonomy of Basidiomycota in the genomic era, the generation of molecular phylogenetic data has become relatively easier. Finding phenotypical characters, especially those that can be applied for identification and classification, however, has become increasingly challenging.
  •  
4.
  • Ovaskainen, Otso, et al. (författare)
  • Global Spore Sampling Project: A global, standardized dataset of airborne fungal DNA
  • 2024
  • Ingår i: Scientific Data. - 2052-4463. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy