SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Savenije Tom J.) "

Sökning: WFRF:(Savenije Tom J.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blösch, Günter, et al. (författare)
  • Twenty-three unsolved problems in hydrology (UPH) - a community perspective
  • 2019
  • Ingår i: Hydrological Sciences Journal. - : Informa UK Limited. - 0262-6667 .- 2150-3435. ; 64:10, s. 1141-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
  •  
2.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 555, s. 497-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
  •  
3.
  •  
4.
  • Chavhan, Sudam D., et al. (författare)
  • Photovoltaic Study of p-type NiO/PC70BM Hybrid Solar Cells
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • Generally, hybrid solar cells are fabricated by using electron donating conducting polymers or molecules and electron accepting inorganic material e.g. metal oxide nanoparticles, such as TiO2, ZnO or SnO2. Inorganic metal oxides posses interesting physical properties like high electron mobility, transparency in the visible spectrum and high dielectric constant. However, there are very few reports on hybrid solar cells fabricated with p-type metal oxide and n-type organic molecules. We have studied photovoltaic properties of bilayer hybrid solar cells constituted of p-type NiO and [6,6]-phenyl-C70-butyric acid methyl ester (PC70BM) molecule. The thin films of NiO were prepared on fluorine doped SnO2 (FTO) substrates by RF sputtering in Ar/O2 mixture atmosphere. To fabricate hybrid solar cells, a PC70BM solution was spin coated on top of the smooth and uniform layer of NiO, having thickness of 90 nm. Current-voltage characteristics were measured in dark and under illumination with monochromatic light of wavelength 460 nm and an incident illumination power of 9 mW/cm2. A short circuit current density of 0.15 mA/cm2, open circuit voltage of 0.23 V, and fill factor of 0.26 were found. To understand the photovoltaic mechanism of this type of hybrid solar cells we studied also the bulk heterojunctions made up of p-type NiO nanoparticles with different PCBM molecules.
  •  
5.
  • Melianas, Armantas, et al. (författare)
  • Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells
  • 2015
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 6:8778
  • Tidskriftsartikel (refereegranskat)abstract
    • In photovoltaic devices, the photo-generated charge carriers are typically assumed to be in thermal equilibrium with the lattice. In conventional materials, this assumption is experimentally justified as carrier thermalization completes before any significant carrier transport has occurred. Here, we demonstrate by unifying time-resolved optical and electrical experiments and Monte Carlo simulations over an exceptionally wide dynamic range that in the case of organic photovoltaic devices, this assumption is invalid. As the photo-generated carriers are transported to the electrodes, a substantial amount of their energy is lost by continuous thermalization in the disorder broadened density of states. Since thermalization occurs downward in energy, carrier motion is boosted by this process, leading to a time-dependent carrier mobility as confirmed by direct experiments. We identify the time and distance scales relevant for carrier extraction and show that the photo-generated carriers are extracted from the operating device before reaching thermal equilibrium.
  •  
6.
  • Murthy, D H K, et al. (författare)
  • Origin of Reduced Bimolecular Recombination in Blends of Conjugated Polymers and Fullerenes
  • 2013
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlag. - 1616-301X .- 1616-3028. ; 23:34, s. 4262-4268
  • Tidskriftsartikel (refereegranskat)abstract
    • Bimolecular charge carrier recombination in blends of a conjugated copolymer based on a thiophene and quinoxaline (TQ1) with a fullerene derivative ((6,6)-phenyl-C-71-butyric acidmethyl ester, PC71BM) is studied by two complementary techniques. TRMC (time-resolved microwave conductance) monitors the conductance of photogenerated mobile charge carriers locally on a timescale of nanoseconds, while using photo-CELIV (charge extraction by linearly increasing voltage) charge carrier dynamics are monitored on a macroscopic scale and over tens of microseconds. Despite these significant differences in the length and time scales, both techniques show a reduced Langevin recombination with a prefactor close to 0.05. For TQ1:PC71BM blends, the value is independent of temperature. On comparing TRMC data with electroluminescence measurements it is concluded that the encounter complex and the charge transfer state have very similar energetic properties. The value for annealed poly(3-hexylthiophene) (P3HT):(6,6)-phenyl-C-61-butyric acid methyl ester (PC61BM) is approximately 10(-4), while for blend systems containing an amorphous polymer values are close to 1. These large differences can be related to the extent of charge delocalization of opposite charges in an encounter complex. Insight is provided into factors governing the bimolecular recombination process, which forms a major loss mechanism limiting the efficiency of polymer solar cells.
  •  
7.
  • Ponseca, Carlito, et al. (författare)
  • Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers.
  • 2015
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 137:51, s. 16043-16048
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the unprecedented interest in organic-inorganic metal halide perovskite solar cells, quantitative information on the charge transfer dynamics into selective electrodes is still lacking. In this paper, we report the time scales and mechanisms of electron and hole injection and recombination dynamics at organic PCBM and Spiro-OMeTAD electrode interfaces. On the one hand, hole transfer is complete on the subpicosecond time scale in MAPbI3/Spiro-OMeTAD, and its recombination rate is similar to that in neat MAPbI3. This was found to be due to a high concentration of dark charges, i.e., holes brought about by unintentional p-type doping of MAPbI3. Hence, the total concentration of holes in the perovskite is hardly affected by optical excitation, which manifested as similar decay kinetics. On the other hand, the decay of the photoinduced conductivity in MAPbI3/PCBM is on the time scale of hundreds of picoseconds to several nanoseconds, due to electron injection into PCBM and electron-hole recombination at the interface occurring at similar rates. These results highlight the importance of understanding the role of dark carriers in deconvoluting the complex photophysical processes in these materials. Moreover, optimizing the preparation processes wherein undesired doping is minimized could prompt the use of organic molecules as a more viable electrode substitute for perovskite solar cell devices.
  •  
8.
  • Ponseca, Carlito, et al. (författare)
  • Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination
  • 2014
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 136:14, s. 5189-5192
  • Tidskriftsartikel (refereegranskat)abstract
    • Organometal halide perovskite-based solar cells have recently been reported to be highly efficient, giving an overall power conversion efficiency of up to 15%. However, much of the fundamental photophysical properties underlying this performance has remained unknown. Here, we apply photoluminescence, transient absorption, time-resolved terahertz and microwave conductivity measurements to determine the time scales of generation and recombination of charge carriers as well as their transport properties in solution-processed CH3NH3PbI3 perovskite materials. We found that electron-hole pairs are generated almost instantaneously after photoexcitation and dissociate in 2 ps forming highly mobile charges (25 cm(2) V-1 s(-1)) in the neat perovskite and in perovskite/alumina blends; almost balanced electron and hole mobilities remain very high up to the microsecond time scale. When the perovskite is introduced into a TiO2 mesoporous structure, electron injection from perovskite to the metal oxide is efficient in less than a picosecond, but the lower intrinsic electron mobility of TiO2 leads to unbalanced charge transport. Microwave conductivity measurements showed that the decay of mobile charges is very slow in CH3NH3PbI3, lasting up to tens of microseconds. These results unravel the remarkable intrinsic properties of CH3NH3PbI3 perovskite material if used as light absorber and charge transport layer. Moreover, finding a metal oxide with higher electron mobility may further increase the performance of this class of solar cells.
  •  
9.
  • Savenije, Tom J., et al. (författare)
  • Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite
  • 2014
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 5:13, s. 2189-2194
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar cells based on organometal halide perovskites have seen rapidly increasing efficiencies, now exceeding 15%. Despite this progress, there is still limited knowledge on the fundamental photophysics. Here we use microwave photoconductance and photoluminescence measurements to investigate the temperature dependence of the carrier generation, mobility, and recombination in (CH3NH3)PbI3. At temperatures maintaining the tetragonal crystal phase of the perovskite, we find an exciton binding energy of about 32 meV, leading to a temperature-dependent yield of highly mobile (6.2 cm(2)/(V s) at 300 K) charge carriers. At higher laser intensities, second-order recombination with a rate constant of gamma = 13 x 10(-10) cm(3) s(-1) becomes apparent. Reducing the temperature results in increasing charge carrier mobilities following a T-1.6 dependence, which we attribute to a reduction in phonon scattering (Sigma mu = 16 cm(2)/(V s) at 165 K). Despite the fact that Sigma mu increases, gamma diminishes with a factor six, implying that charge recombination in (CH3NH3)PbI3 is temperature activated. The results underline the importance of the perovskite crystal structure, the exciton binding energy, and the activation energy for recombination as key factors in optimizing new perovskite materials.
  •  
10.
  • Unger, Eva (författare)
  • XDSC : Excitonic Dye Solar Cells
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Solar energy is the foremost power source of our planet. Driving photosynthesis on our planet for 3 billion years the energy stored in the form of fossil fuels also originates from the sun. Consumption of fossil fuels to generate energy is accompanied with CO2 emission which affects the earth's climate in a serious manner. Therefore, alternative ways of converting energy have to be found. Solar cells convert sunlight directly into electricity and are therefore an important technology for future electricity generation. In this work solar cells based on the inorganic semiconductor titanium dioxide and hole-transporting dyes are investigated. These type of solar cells are categorized as hybrid solar cells and are conceptually related to both dye-sensitized solar cells and organic solar cells. Light absorption in the bulk of the hole-transporting dye layer leads to the formation of excitons that can be harvested at the organic/inorganic interface. Two design approaches were investigated: 1) utilizing a multilayer of a hole-transporting dye and 2) utilizing a hole-transporting dye as light harvesting antenna to another dye which is bound to the titanium dioxide surface.  Using a multiple dye layer in titanium dioxide/hole transporting dye devices, leads to an improved device performance as light harvested in the consecutive dye layers can contribute to the photocurrent. In devices using both an inteface-bound dye and a hole-transporting dye, excitation energy can be transferred from the hole-transporting dye to the interface dye. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (8)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Savenije, Tom J. (8)
Sundström, Villy (3)
Yartsev, Arkady (3)
Inganäs, Olle (2)
Zheng, Kaibo (2)
Hutter, Eline M. (2)
visa fler...
Melianas, Armantas (2)
Pullerits, Tönu (2)
Pascher, Torbjörn (1)
Unger, Eva (1)
Krause, Stefan (1)
Kemerink, Martijn (1)
Zhu, Qiushi (1)
Chábera, Pavel (1)
Abdi-Jalebi, Mojtaba (1)
Philippe, Bertrand, ... (1)
Alsari, Mejd (1)
Lilliu, Samuele (1)
Rensmo, Håkan (1)
Friend, Richard H. (1)
Andaji-Garmaroudi, Z ... (1)
Cacovich, Stefania (1)
Stavrakas, Camille (1)
Richter, Johannes M. (1)
Booker, Edward P. (1)
Pearson, Andrew J. (1)
Divitini, Giorgio (1)
Ducati, Caterina (1)
Stranks, Samuel D. (1)
Seibert, Jan (1)
Zhang, Fengling (1)
Di Baldassarre, Giul ... (1)
Van Loon, Anne F. (1)
Boschloo, Gerrit (1)
Kalantari, Zahra (1)
Mazzoleni, Maurizio (1)
Destouni, Georgia (1)
Castelletti, Andrea (1)
McDonnell, Jeffrey J ... (1)
Arheimer, Berit (1)
Ridolfi, Elena (1)
Beven, Keith (1)
Tang, Zheng (1)
Canton, Sophie (1)
Cohen, Boiko (1)
Douhal, Abderrazzak (1)
Moons, Ellen, 1966- (1)
Farmer, William H. (1)
Andreassian, Vazken (1)
Viglione, Alberto (1)
visa färre...
Lärosäte
Uppsala universitet (4)
Lunds universitet (4)
Linköpings universitet (3)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Karlstads universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Teknik (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy