SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schlatholter T.) "

Search: WFRF:(Schlatholter T.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zettergren, Henning, et al. (author)
  • Roadmap on dynamics of molecules and clusters in the gas phase
  • 2021
  • In: European Physical Journal D. - : Springer Science and Business Media LLC. - 1434-6060 .- 1434-6079. ; 75:5
  • Journal article (peer-reviewed)abstract
    • This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science.
  •  
2.
  • Chen, Tao, et al. (author)
  • Absolute fragmentation cross sections in atom-molecule collisions : Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules
  • 2014
  • In: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 140:22
  • Journal article (peer-reviewed)abstract
    • We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH(+)) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH(+) + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C6H5). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e. g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.
  •  
3.
  • Reitsma, G., et al. (author)
  • Activation energies for fragmentation channels of anthracene dications experiment and theory
  • 2012
  • In: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 45:21, s. 215201-
  • Journal article (peer-reviewed)abstract
    • We have studied the fragmentation of the polycyclic aromatic hydrocarbon anthracene (C14H10) after double electron transfer to a 5 keV proton. The excitation energies leading to the most relevant dissociation and fission channels of the resulting molecular dication were directly determined experimentally. Density functional theory calculations were performed to explore the potential energy surfaces on which the fragmentation dynamics proceed. There is clear experimental evidence for a dominance of fission into C11H7+-C3H3+ over C2H2+ loss. The energetic ordering of the dissociation and fission channels and the kinetic energy releases are in good agreement with the theoretical results. It can be concluded that the unique combination of experiment and theory presented here is an excellent tool to study the fragmentation of complex molecular ions in unprecedented detail.
  •  
4.
  • Reitsma, G., et al. (author)
  • Ion-polycyclic aromatic hydrocarbon collisions : kinetic energy releases for specific fragmentation channels
  • 2013
  • In: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 46:24, s. 245201-
  • Journal article (peer-reviewed)abstract
    • We report on 30 keV He2+ collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.
  •  
5.
  • Rouzee, A., et al. (author)
  • Towards imaging of ultrafast molecular dynamics using FELs
  • 2013
  • In: Journal of Physics B: Atomic, Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 46:16
  • Journal article (peer-reviewed)abstract
    • The dissociation dynamics induced by a 100 fs, 400 nm laser pulse in a rotationally cold Br-2 sample was characterized by Coulomb explosion imaging (CEI) using a time-delayed extreme ultra-violet (XUV) FEL pulse, obtained from the Free electron LASer in Hamburg (FLASH). The momentum distribution of atomic fragments resulting from the 400 nm-induced dissociation was measured with a velocity map imaging spectrometer and used to monitor the internuclear distance as the molecule dissociated. By employing the simultaneously recorded in-house timing electro-optical sampling data, the time resolution of the final results could be improved to 300 fs, compared to the inherent 500 fs time-jitter of the FEL pulse. Before dissociation, the Br-2 molecules were transiently 'fixed in space' using laser-induced alignment. In addition, similar alignment techniques were used on CO2 molecules to allow the measurement of the photoelectron angular distribution (PAD) directly in the molecular frame (MF). Our results on MFPADs in aligned CO2 molecules, together with our investigation of the dissociation dynamics of the Br-2 molecules with CEI, show that information about the evolving molecular structure and electronic geometry can be retrieved from such experiments, therefore paving the way towards the study of complex non-adiabatic dynamics in molecules through XUV time-resolved photoion and photoelectron spectroscopy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view