SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schlieder Joshua) "

Sökning: WFRF:(Schlieder Joshua)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
2.
  • Crossfield, Ian J. M., et al. (författare)
  • 197 CANDIDATES AND 104 VALIDATED PLANETS IN K2's FIRST FIVE FIELDS
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 226:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 197 planet candidates discovered using data from the first year of the NASA K2 mission (Campaigns 0-4), along with the results of an intensive program of photometric analyses, stellar spectroscopy, high-resolution imaging, and statistical validation. We distill these candidates into sets of 104 validated planets (57 in multi-planet systems), 30 false positives, and 63 remaining candidates. Our validated systems span a range of properties, with median values of R-P = 2.3 R-circle plus, P = 8.6 days, T-eff = 5300 K, and Kp = 12.7 mag. Stellar spectroscopy provides precise stellar and planetary parameters for most of these systems. We show that K2 has increased by 30% the number of small planets known to orbit moderately bright stars (1-4 R-circle plus, Kp = 9-13. mag). Of particular interest are 76 planets smaller than 2 R-circle plus, 15 orbiting stars brighter than Kp = 11.5. mag, 5 receiving Earth-like irradiation levels, and several multi-planet systems-including 4 planets orbiting the M dwarf K2-72 near mean-motion resonances. By quantifying the likelihood that each candidate is a planet we demonstrate that our candidate sample has an overall false positive rate of 15%-30%, with rates substantially lower for small candidates (<2 R-circle plus) and larger for candidates with radii >8 R-circle plus and/or with P < 3 days. Extrapolation of the current planetary yield suggests that K2 will discover between 500 and 1000 planets in its planned four-year mission, assuming sufficient follow-up resources are available. Efficient observing and analysis, together with an organized and coherent follow-up strategy, are essential for maximizing the efficacy of planet-validation efforts for K2, TESS, and future large-scale surveys.
  •  
3.
  • Huang, Chelsea X., et al. (författare)
  • TESS Spots a Hot Jupiter with an Inner Transiting Neptune
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 892:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot Jupiters are rarely accompanied by other planets within a factor of a few in orbital distance. Previously, only two such systems have been found. Here, we report the discovery of a third system using data from the Transiting Exoplanet Survey Satellite (TESS). The host star, TOI-1130, is an eleventh magnitude K-dwarf in Gaia G-band. It has two transiting planets: a Neptune-sized planet (3.65 ± 0.10 R\oplus) with a 4.1 days period, and a hot Jupiter (1.50-0.22+0.27 RJ) with an 8.4 days period. Precise radial-velocity observations show that the mass of the hot Jupiter is 0.974-0.044+0.043 MJ. For the inner Neptune, the data provide only an upper limit on the mass of 0.17 MJ (3σ). Nevertheless, we are confident that the inner planet is real, based on follow-up ground-based photometry and adaptive-optics imaging that rule out other plausible sources of the TESS transit signal. The unusual planetary architecture of and the brightness of the host star make TOI-1130 a good test case for planet formation theories, and an attractive target for future spectroscopic observations.
  •  
4.
  • Oddo, Dominic, et al. (författare)
  • Characterization of a Set of Small Planets with TESS and CHEOPS and an Analysis of Photometric Performance
  • 2023
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 165:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The radius valley carries implications for how the atmospheres of small planets form and evolve, but this feature is visible only with highly precise characterizations of many small planets. We present the characterization of nine planets and one planet candidate with both NASA TESS and ESA CHEOPS observations, which adds to the overall population of planets bordering the radius valley. While five of our planets—TOI 118 b, TOI 262 b, TOI 455 b, TOI 560 b, and TOI 562 b—have already been published, we vet and validate transit signals as planetary using follow-up observations for four new TESS planets, including TOI 198 b, TOI 244 b, TOI 444 b, and TOI 470 b. While a three times increase in primary mirror size should mean that one CHEOPS transit yields an equivalent model uncertainty in transit depth as about nine TESS transits in the case that the star is equally as bright in both bands, we find that our CHEOPS transits typically yield uncertainties equivalent to between two and 12 TESS transits, averaging 5.9 equivalent transits. Therefore, we find that while our fits to CHEOPS transits provide overall lower uncertainties on transit depth and better precision relative to fits to TESS transits, our uncertainties for these fits do not always match expected predictions given photon-limited noise. We find no correlations between number of equivalent transits and any physical parameters, indicating that this behavior is not strictly systematic, but rather might be due to other factors such as in-transit gaps during CHEOPS visits or nonhomogeneous detrending of CHEOPS light curves.
  •  
5.
  • Boccaletti, Anthony, et al. (författare)
  • Fast-moving features in the debris disk around AU Microscopii
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7572, s. 230-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source(1). These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the beta Pictoris system, in which the known planet generates an observable warp in the disk(2-5). The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units(6-9). Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
  •  
6.
  • Calissendorff, Per, et al. (författare)
  • The discrepancy between dynamical and theoretical mass in the triplet-system 2MASS J10364483+1521394
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 604
  • Tidskriftsartikel (refereegranskat)abstract
    • We combine new Lucky Imaging astrometry from New Technology Telescope /AstraLux Sur with already published astrometry from the AstraLux Large M-dwarf Multiplicity Survey to compute orbital elements and individual masses of the 2MASS J10364483 + 1521394 triple system belonging to the Ursa-Major moving group. The system consists of one primary low-mass M-dwarf orbited by two less massive companions, for which we determine a combined dynamical mass of MB+C = 0 : 48 +/- 0 : 14 M-circle dot. We show from the companions' relative motions that they are of equal mass (with a mass ratio of 1 : 00 +/- 0 : 03), thus 0 : 24 +/- 0 : 07 M-circle dot individually, with a separation of 3 : 2 +/- 0 : 3 AU, and we conclude that these masses are significantly higher (30%) than what is predicted by theoretical stellar evolutionary models. The biggest uncertainty remains the distance to the system, here adopted as 20 : 1 +/- 2 : 0 pc based on trigonometric parallax, whose ambiguity has a major impact on the result. With the new observational data we are able to conclude that the orbital period of the BC pair is 8.4(-0.021)(+0.04) yr.
  •  
7.
  • Calissendorff, Per, 1989-, et al. (författare)
  • Updated orbital monitoring and dynamical masses for nearby M-dwarf binaries
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Young M-type binaries are particularly useful for precise isochronal dating by taking advantage of their extended pre-main sequence evolution. Orbital monitoring of these low-mass objects becomes essential in constraining their fundamental properties, as dynamical masses can be extracted from their Keplerian motion. Here, we present the combined efforts of the AstraLux Large Multiplicity Survey, together with a filler sub-programme from the SpHere INfrared Exoplanet (SHINE) project and previously unpublished data from the FastCam lucky imaging camera at the Nordical Optical Telescope (NOT) and the NaCo instrument at the Very Large Telescope (VLT). Building on previous work, we use archival and new astrometric data to constrain orbital parameters for 20 M-type binaries. We identify that eight of the binaries have strong Bayesian probabilities and belong to known young moving groups (YMGs). We provide a first attempt at constraining orbital parameters for 14 of the binaries in our sample, with the remaining six having previously fitted orbits for which we provide additional astrometric data and updated Gaia parallaxes. The substantial orbital information built up here for four of the binaries allows for direct comparison between individual dynamical masses and theoretical masses from stellar evolutionary model isochrones, with an additional three binary systems with tentative individual dynamical mass estimates likely to be improved in the near future. We attained an overall agreement between the dynamical masses and the theoretical masses from the isochrones based on the assumed YMG age of the respective binary pair. The two systems with the best orbital constrains for which we obtained individual dynamical masses, J0728 and J2317, display higher dynamical masses than predicted by evolutionary models.
  •  
8.
  • Currie, Thayne, et al. (författare)
  • SCExAO/CHARIS Near-infrared Direct Imaging, Spectroscopy, and Forward-Modeling of kappa And b : A Likely Young, Low-gravity Superjovian Companion
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 156:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present SCExAO/CHARIS high-contrast imaging/JHK integral field spectroscopy of kappa And b, a directly imaged low-mass companion orbiting a nearby B9V star. We detect kappa And b at a high signal-to-noise ratio and extract high-precision spectrophotometry using a new forward-modeling algorithm for (A-)LOCI complementary to KLIP-FM developed by Pueyo et al. kappa And b's spectrum best resembles that of a low-gravity LO-L1 dwarf (L0-L1 gamma). Its spectrum and luminosity are very well matched by 2MASS J0141-4633 and several other 12.5-15 M-J free-floating members of the 40 Myr old Tuc-Hor Association, consistent with a system age derived from recent interferometric results for the primary, a companion mass at/near the deuterium-burning limit (13(-2)(+12) M-J), and a companion-to-primary mass ratio characteristic of other directly imaged planets (q similar to 0.0051(-0.001)(+0.005)). We did not unambiguously identify additional, more closely orbiting companions brighter and more massive than kappa And b down to p similar to 0.'' 3 (15 au). SCExAO/CHARIS and complementary Keck/NIRC2 astrometric points reveal clockwise orbital motion. Modeling points toward a likely eccentric orbit: a subset of acceptable orbits include those that are aligned with the star's rotation axis. However, kappa And b's semimajor axis is plausibly larger than 55 au and in a region where disk instability could form massive companions. Deeper high-contrast imaging of kappa And and low-resolution spectroscopy from extreme adaptive optics systems such as SCExAO/CHARIS and higher-resolution spectroscopy from Keck/OSIRIS or, later, IRIS on the Thirty Meter Telescope could help to clarify kappa And b's chemistry and whether its spectrum provides an insight into its formation environment.
  •  
9.
  • Currie, Thayne, et al. (författare)
  • Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546
  • 2017
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 836:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r similar to 0.3 to r similar to 1 (34-114 au). The disk is oriented in a near east-west direction (PA similar to 75 degrees), is inclined by i similar to 70 degrees-75 degrees, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk's eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t similar to 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (3-10 Myr) and a possible connection to Taurus-Auriga's star formation history. SCExAO's planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk's visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet-disk interactions.
  •  
10.
  • Durkan, Stephen, et al. (författare)
  • Radial velocity survey of spatially resolved young, low-mass binaries
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification and characterisation of low-mass binaries is of importance for a range of astrophysical investigations. Low-mass binaries in young (similar to 10-100 Myr) moving groups (YMGs) in the solar neighborhood are of particular significance as they provide unique opportunities to calibrate stellar models and evaluate the ages and coevality of the groups themselves. Low-mass M-dwarfs have pre-main sequence life times on the order of similar to 100 Myr and therefore are continually evolving along a mass-luminosity track throughout the YMG phase, providing ideal laboratories for precise isochronal dating, if a model-independent dynamical mass can be measured. AstraLux lucky imaging multiplicity surveys have recently identified hundreds of new YMG low-mass binaries, where a subsample of M-dwarf multiples have estimated orbital periods less than 50 yr. We have conducted a radial velocity survey of a sample of 29 such targets to complement the astrometric data. This will allow enhanced orbital determinations and precise dynamical masses to be derived in a shorter timeframe than possible with astrometric monitoring alone, and allow for a more reliable isochronal analysis. Here we present radial velocity measurements derived for our sample over several epochs. We report the detection of the three-component spectroscopic multiple 2MASS J05301858-5358483, for which the C component is a new discovery, and forms a tight pair with the B component. Originally identified as a YMG member, we find that this system is a likely old field interloper, whose high chromospheric activity level is caused by tidal spin-up of the tight BC pair. Two other triple systems with a tight pair exist in the sample, 2MASS J04244260-0647313 (previously known) and 2MASS J20163382-0711456, but for the rest of the targets we find that additional tidally synchronized companions are highly unlikely, providing further evidence that their high chromospheric activity levels are generally signatures of youth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy