SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schwerdt Julian G.) "

Search: WFRF:(Schwerdt Julian G.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Betts, Natalie S., et al. (author)
  • Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes
  • 2021
  • In: Plant Science. - : Elsevier BV. - 0168-9452 .- 1873-2259. ; 308
  • Journal article (peer-reviewed)abstract
    • Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-13-xylanase and six 13-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a 13-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.
  •  
2.
  • Clayton-Cuch, Daniel, et al. (author)
  • Identification and characterisation of MdUGT78T2 as a galactosyltransferase with dual activity on flavonol and anthocyanidin substrates in red-skinned apple fruit (Malus domestica L.)
  • 2023
  • In: Food Chemistry. - : Elsevier BV. - 0308-8146 .- 1873-7072. ; 424
  • Journal article (peer-reviewed)abstract
    • Anthocyanidin and flavonol glycosides have been linked to the health-promoting effects associated with apple consumption. However, very few enzymes involved in flavonoid glycosylation have been characterised to date. Here, we present the identification and phylogenetic analysis of 234 putative glycosyltransferases involved in flavonoid biosynthesis, and detail the biochemical and structural characterisation of MdUGT78T2 as a strict galactosyltransferase involved in the formation of quercetin-3-O-galactoside and cyanidin-3-O-galactoside, the major glycoconjugates of flavonoids in apple. The enzyme is also active on other flavonoids but with a lower catalytic efficiency. Our data, complemented with gene expression analysis suggest that MdUGT78T2 synthesises the glycoconjugates at both the early and late stages of fruit development. This newly discovered type of catalytic activity can potentially be exploited for in vitro modification of flavonoids to increase their stability in food products and to modify apple fruits and other commercial crops through breeding approaches to enhance their health benefits.
  •  
3.
  • Dimitroff, George, et al. (author)
  • (1,3;1,4)-beta-Glucan Biosynthesis by the CSLF6 Enzyme : Position and Flexibility of Catalytic Residues Influence Product Fine Structure
  • 2016
  • In: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 55:13, s. 2054-2061
  • Journal article (peer-reviewed)abstract
    • Cellulose synthase-like F6 (CslF6) genes encode polysaccharide synthases responsible for (1,3;1,4)-beta-glucan biosynthesis in cereal grains. However, it is not clear how both (1,3)- and (1,4) -linkages are incorporated into a single polysaccharide chain and how the frequency and arrangement of the two linkage types that define the fine structure of the polysaccharide are controlled. Through transient expression in Nicotiana benthamiana leaves, two CSLF6 orthologs from different cereal species were shown to mediate the synthesis of (1,3;1,4)-beta-glucans with very different fine structures. Chimeric cDNA constructs with interchanged sections of the barley and sorghum CslF6 genes were developed to identify regions of the synthase enzyme responsible for these differences. A single amino acid residue upstream of the TED motif in the catalytic region was shown to dramatically change the fine structure of the polysaccharide produced. The structural basis of this effect can be rationalized by reference to a homology model of the enzyme and appears to be related to the position and flexibility of the TED motif in the active site of the enzyme. The region and amino acid residue identified provide opportunities to manipulate the solubility of (1,3;1,4)-beta-glucan in grains and vegetative tissues of the grasses and, in particular, to enhance the solubility of dietary fibers that are beneficial to human health.
  •  
4.
  • Pham, Trang A.T., et al. (author)
  • Analysis of cell wall synthesis and metabolism during early germination of Blumeria graminis f. sp. hordei conidial cells induced in vitro
  • 2019
  • In: The Cell Surface. - : Elsevier BV. - 2468-2330. ; 5, s. 100030-
  • Journal article (peer-reviewed)abstract
    • As an obligate biotroph, Blumeria graminis f. sp. hordei (Bgh) cannot be grown in an axenic culture, and instead must be cultivated on its host species, Hordeum vulgare (barley). In this study an in vitro system utilizing n-hexacosanal, a constituent of the barley cuticle and known inducer of Bgh germination, was used to cultivate Bgh and differentiate conidia up to the appressorial germ tube stage for analysis. Transcriptomic and proteomic profiling of the appressorial germ tube stage revealed that there was a significant shift towards energy and protein production during the pre-penetrative phase of development, with an up-regulation of enzymes associated with cellular respiration and protein synthesis, modification and transport. Glycosidic linkage analysis of the cell wall polysaccharides demonstrated that during appressorial development an increase in 1,3- and 1,4-linked glucosyl residues and xylosyl residues was detected along with a significant decrease in galactosyl residues. The use of this in vitro cultivation method demonstrates that it is possible to analyse the pre-penetrative processes of Bgh development in the absence of a plant host.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view