SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Soneji Shamit) "

Search: WFRF:(Soneji Shamit)

  • Result 1-10 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Billing, Matilda, et al. (author)
  • A network including TGFβ/Smad4, Gata2 and p57 regulates proliferation of mouse hematopoietic progenitor cells.
  • 2016
  • In: Experimental Hematology. - : Elsevier BV. - 1873-2399 .- 0301-472X. ; 44:5, s. 399-409
  • Journal article (peer-reviewed)abstract
    • Transforming growth factor-β (TGFβ) is a potent inhibitor of hematopoietic stem and progenitor cell proliferation. However, the precise mechanism for this effect is unknown. Here, we have identified the transcription factor Gata2, previously described as an important regulator of hematopoietic stem cell (HSC) function, as an early and direct target gene for TGFβ-induced Smad signaling in hematopoietic progenitor cells. We also report that Gata2 is involved in mediating a significant part of the TGFβ response in primitive hematopoietic cells. Interestingly, the cell cycle regulator and TGFβ signaling effector molecule p57 was found to be upregulated as a secondary response to TGFβ. We observed Gata2 binding upstream of the p57 genomic locus, and importantly loss of Gata2 abolished TGFβ-stimulated induction of p57 as well as the resulting growth arrest of hematopoietic progenitors. Our results connect key molecules involved in HSC self-renewal and reveal a functionally relevant network regulating proliferation of primitive hematopoietic cells.
  •  
3.
  • Capellera-Garcia, Sandra, et al. (author)
  • Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion
  • 2016
  • In: Cell Reports. - : Elsevier BV. - 2211-1247. ; 15:11, s. 2550-2562
  • Journal article (peer-reviewed)abstract
    • Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC) development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs). We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development.
  •  
4.
  • Dhapola, Parashar, et al. (author)
  • Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Journal article (peer-reviewed)abstract
    • As the scale of single-cell genomics experiments grows into the millions, the computational requirements to process this data are beyond the reach of many. Herein we present Scarf, a modularly designed Python package that seamlessly interoperates with other single-cell toolkits and allows for memory-efficient single-cell analysis of millions of cells on a laptop or low-cost devices like single-board computers. We demonstrate Scarf's memory and compute-time efficiency by applying it to the largest existing single-cell RNA-Seq and ATAC-Seq datasets. Scarf wraps memory-efficient implementations of a graph-based t-stochastic neighbour embedding and hierarchical clustering algorithm. Moreover, Scarf performs accurate reference-anchored mapping of datasets while maintaining memory efficiency. By implementing a subsampling algorithm, Scarf additionally has the capacity to generate representative sampling of cells from a given dataset wherein rare cell populations and lineage differentiation trajectories are conserved. Together, Scarf provides a framework wherein any researcher can perform advanced processing, subsampling, reanalysis, and integration of atlas-scale datasets on standard laptop computers. Scarf is available on Github: https://github.com/parashardhapola/scarf .
  •  
5.
  • Galeev, Roman, et al. (author)
  • Genome-wide RNAi Screen Identifies Cohesin Genes as Modifiers of Renewal and Differentiation in Human HSCs
  • 2016
  • In: Cell Reports. - : Elsevier BV. - 2211-1247. ; 14:12, s. 2988-3000
  • Journal article (peer-reviewed)abstract
    • To gain insights into the regulatory mechanisms of hematopoietic stem cells (HSCs), we employed a genome-wide RNAi screen in human cord-blood derived cells and identified candidate genes whose knockdown maintained the HSC phenotype during culture. A striking finding was the identification of members of the cohesin complex (STAG2, RAD21, STAG1, and SMC3) among the top 20 genes from the screen. Upon individual validation of these cohesin genes, we found that their knockdown led to an immediate expansion of cells with an HSC phenotype in vitro. A similar expansion was observed in vivo following transplantation to immunodeficient mice. Transcriptome analysis of cohesin-deficient CD34(+) cells showed an upregulation of HSC-specific genes, demonstrating an immediate shift toward a more stem-cell-like gene expression signature upon cohesin deficiency. Our findings implicate cohesin as a major regulator of HSCs and illustrate the power of global RNAi screens to identify modifiers of cell fate.
  •  
6.
  • Ghazanfari, Roshanak, et al. (author)
  • Human Primary Bone Marrow Mesenchymal Stromal Cells and Their in vitro Progenies Display Distinct Transcriptional Profile Signatures
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Bone marrow mesenchymal stromal cells (BM-MSCs) are a rare population of cells that gives rise to skeletal tissues and the hematopoietic stroma in vivo. Recently, we have demonstrated that BM-MSCs fulfill stringent in vivo stem cell criteria when propagated as non-adherent mesenspheres but not as adherent-cultured cells. Motivated by these profound functional differences, the current study aimed to identify potential important MSC regulators by investigating global gene expression profiles of adherent and non-adherent culture-derived BM-MSCs in comparison with primary BM-MSCs. A substantial number of genes were differentially expressed between primary and culture-expanded cells already early upon culture, and numerous genes were found to be different when comparing adherent and non-adherent BM-MSCs. Cluster analysis identified 16 sets of genes of which two displayed comparable gene expression levels in primary and non-adherent cultured cells, but not in adherent cultured cells. This pattern suggested that these clusters contained candidate regulators of BM-MSCs. Gene expression differences were confirmed for selected genes and BM-MSC transcription factors by protein analysis and RT-PCR, respectively. Taken together, these data demonstrated profound gene expression changes upon culture of primary BM-MSCs. Moreover, gene cluster differences provide the basis to uncover the regulatory mechanisms that control primary and cultured BM-MSCs.
  •  
7.
  • Guibentif, Carolina, et al. (author)
  • Single-Cell Analysis Identifies Distinct Stages of Human Endothelial-to-Hematopoietic Transition
  • 2017
  • In: Cell Reports. - : Elsevier BV. - 2211-1247. ; 19:1, s. 10-19
  • Journal article (peer-reviewed)abstract
    • During development, hematopoietic cells originate from endothelium in a process known as endothelial-to-hematopoietic transition (EHT). To study human EHT, we coupled flow cytometry and single-cell transcriptional analyses of human pluripotent stem cell-derived CD34(+) cells. The resulting transcriptional hierarchy showed a continuum of endothelial and hematopoietic signatures. At the interface of these two signatures, a unique group of cells displayed both an endothelial signature and high levels of key hematopoietic stem cell-associated genes. This interphase group was validated via sort and subculture as an immediate precursor to hematopoietic cells. Differential expression analyses further divided this population into subgroups, which, upon subculture, showed distinct hematopoietic lineage differentiation potentials. We therefore propose that immediate precursors to hematopoietic cells already have their hematopoietic lineage restrictions defined prior to complete downregulation of the endothelial signature. These findings increase our understanding of the processes of de novo hematopoietic cell generation in the human developmental context.
  •  
8.
  • Guzzi, Nicola, et al. (author)
  • Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells
  • 2018
  • In: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 173:5, s. 26-1216
  • Journal article (peer-reviewed)abstract
    • Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ “writer” PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease. Translational control in stem cells is orchestrated by pseudouridylation of specific tRNA-derived fragments, impacting stem cell commitment during key developmental processes.
  •  
9.
  • Halvarsson, Camilla, 1985-, et al. (author)
  • Putative Role of Nuclear Factor-Kappa B But Not Hypoxia-Inducible Factor-1α in Hypoxia-Dependent Regulation of Oxidative Stress in Hematopoietic Stem and Progenitor Cells
  • 2019
  • In: Antioxidants and Redox Signaling. - : Mary Ann Liebert. - 1523-0864 .- 1557-7716. ; 31:3, s. 211-226
  • Journal article (peer-reviewed)abstract
    • Aims: Adaptation to low oxygen of hematopoietic stem cells (HSCs) in the bone marrow has been demonstrated to depend on the activation of hypoxia-inducible factor (HIF)-1α as well as the limited production of reactive oxygen species (ROS). In this study, we aimed at determining whether HIF-1α is involved in protecting HSCs from ROS.Results: Oxidative stress was induced by DL-buthionine-(S,R)-sulfoximine (BSO)-treatment, which increases the mitochondrial ROS level. Hypoxia rescued Lineage-Sca-1+c-kit+ (LSK) cells from BSO-induced apoptosis, whereas cells succumbed to apoptosis in normoxia. Apoptosis in normoxia was inhibited with the antioxidant N-acetyl-L-cysteine or by overexpression of anti-apoptotic BCL-2. Moreover, stabilized expression of oxygen-insensitive HIFs could not protect LSK cells from oxidative stress-induced apoptosis at normoxia, neither could short hairpin RNA to Hif-1α inhibit the protective effects by hypoxia in LSK cells. Likewise, BSO treatment of LSK cells from Hif-1α knockout mice did not suppress the effects seen in hypoxia. Microarray analysis identified the nuclear factor-kappa B (NF-κB) pathway as a pathway induced by hypoxia. By using NF-κB lentiviral construct and DNA-binding assay, we found increased NF-κB activity in cells cultured in hypoxia compared with normoxia. Using an inhibitor against NF-κB activation, we could confirm the involvement of NF-κB signaling as BSO-mediated cell death was significantly increased in hypoxia after adding the inhibitor.Innovation: HIF-1α is not involved in protecting HSCs and progenitors to elevated levels of ROS on glutathione depletion during hypoxic conditions.Conclusion: The study proposes a putative role of NF-κB signaling as a hypoxia-induced regulator in early hematopoietic cells.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view