SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ståhlman Marcus) "

Sökning: WFRF:(Ståhlman Marcus)

  • Resultat 1-10 av 112
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Svahn, Sara L, et al. (författare)
  • Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis
  • 2016
  • Ingår i: Infection and Immunity. - : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 84:4, s. 1205-1213
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics, S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus. Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival.
  •  
2.
  • Al-Dury, Samer, et al. (författare)
  • Obeticholic acid may increase the risk of gallstone formation in susceptible patients.
  • 2019
  • Ingår i: Journal of hepatology. - : Elsevier BV. - 1600-0641 .- 0168-8278. ; 71:5, s. 986-991
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear farnesoid X receptor (FXR) agonist obeticholic acid (OCA) has been developed for the treatment of liver diseases. We aimed to determine whether OCA treatment increases the risk of gallstone formation.Twenty patients awaiting laparoscopic cholecystectomy were randomized to treatment with OCA (25 mg/day) or placebo for three weeks before surgery. Serum bile acids (BAs), the BA synthesis marker C4 (7α-hydroxy-cholest-4-ene-3-one), and fibroblast growth factor 19 (FGF19) were measured before and after treatment. During surgery, biopsies from the liver and the whole bile-filled gallbladder were collected for analyses of gene expression, biliary lipids and FGF19.In serum, OCA increased FGF19 (from 95.0±8.5 to 234.4±35.6 ng/L) and decreased C4 (from 31.4±22.8 to 2.8±4.0 nmol/L) and endogenous BAs (from 1312.2±236.2 to 517.7±178.9 nmol/L; all p<0.05). At surgery, BAs in gallbladder bile were lower in OCA patients than controls (OCA, 77.9±53.6 mmol/L; placebo, 196.4±99.3 mmol/L; p<0.01), resulting in a higher cholesterol saturation index (OCA, 2.8±1.1; placebo, 1.8±0.8; p < 0.05). In addition, hydrophobic OCA conjugates accounted for 13.6±5.0% of gallbladder BAs after OCA treatment, resulting in a higher hydrophobicity index (OCA, 0.43±0.09; placebo, 0.34±0.07, p<0.05). Gallbladder FGF19 was three-fold higher in OCA patients than in controls (OCA, 40.3±16.5 ng/L; placebo, 13.5±13.1 ng/mL; p<0.005). Gene expression analysis indicated a mainly gallbladder epithelial origin of FGF19.Our results show for the first time an enrichment of FGF19 in human bile after OCA treatment. In accordance with its murine homolog FGF15, FGF19 might trigger relaxation and filling of the gallbladder which, in combination with increased cholesterol saturation and BA hydrophobicity, would enhance the risk for gallstone development.Obeticholic acid increased human gallbladder cholesterol saturation and bile acid hydrophobicity, both decreasing cholesterol solubility in bile. Together with increased hepatobiliary FGF19, our findings suggest that pharmacological FXR activation increases the risk of gallstone formation.
  •  
3.
  • Al-Dury, Samer, et al. (författare)
  • Pilot study with IBAT inhibitor A4250 for the treatment of cholestatic pruritus in primary biliary cholangitis
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Pruritus is a common complication of cholestatic liver diseases. Inhibition of the ileal bile acid transporter (IBAT/ASBT) may emerge as treatment option. Our aim was to assess tolerability and effect on pruritus of the selective IBAT inhibitor A4250 in patients with primary biliary cholangitis (PBC). Ten patients with PBC and bile acid sequestrant treatment of cholestatic pruritus were after a two-week wash out of the bile acid sequestrant treated with either 0.75 mg (n = 4) or 1.5 mg (n = 5) of A4250 for four weeks. Patients' pruritus was assessed by Visual Analogue Scale (VAS), 5-D itch scale and the pruritus module of the PBC40 questionnaire. Plasma bile acids and 7 alpha-hydroxy-4-cholesten-3-one were measured by UPLC-MS/MS, plasma fibroblast growth factor 19 by ELISA, and serum autotaxin activity by homemade assay. All nine patients exposed to A4250 reported a remarkable improvement in pruritus, until none or mild according to 5-D itch, VAS and PBC40 pruritus. Five patients finished the study prematurely due to abdominal pain (5/5) and diarrhoea (4/5). The high incidence of probably bile acid malabsorption-related diarrhoea and abdominal pain in the bile acid sequestrant pre-treated population indicates that the start dose of A4250 may have been too high for adult patients.
  •  
4.
  • Amrutkar, Manoj, et al. (författare)
  • Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model
  • 2015
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 64:8, s. 2791-2804
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the molecular networks controlling ectopic lipid deposition, glucose tolerance, and insulin sensitivity is essential to identifying new pharmacological approaches to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a negative regulator of glucose and insulin homeostasis based on observations in myoblasts with acute depletion of STK25 and in STK25-overexpressing transgenic mice. Here, we challenged Stk25 knockout mice and wild-type littermates with a high-fat diet and showed that STK25 deficiency suppressed development of hyperglycemia and hyperinsulinemia, improved systemic glucose tolerance, reduced hepatic gluconeogenesis, and increased insulin sensitivity. Stk25(-/-) mice were protected from diet-induced liver steatosis accompanied by decreased protein levels of acetyl-CoA carboxylase, a key regulator of both lipid oxidation and synthesis. Lipid accumulation in Stk25(-/-) skeletal muscle was reduced, and expression of enzymes controlling the muscle oxidative capacity (Cpt1, Acox1, Cs, Cycs, Ucp3) and glucose metabolism (Glut1, Glut4, Hk2) was increased. These data are consistent with our previous study of STK25 knockdown in myoblasts and reciprocal to the metabolic phenotype of Stk25 transgenic mice, reinforcing the validity of the results. The findings suggest that STK25 deficiency protects against the metabolic consequences of chronic exposure to dietary lipids and highlight the potential of STK25 antagonists for the treatment of type 2 diabetes.
  •  
5.
  • Amrutkar, Manoj, et al. (författare)
  • Protein kinase STK25 controls lipid partitioning in hepatocytes and correlates with liver fat content in humans
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:2, s. 341-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Type 2 diabetes is closely associated with pathological lipid accumulation in the liver, which is suggested to actively contribute to the development of insulin resistance. We recently identified serine/threonine protein kinase 25 (STK25) as a regulator of liver steatosis, whole-body glucose tolerance and insulin sensitivity in a mouse model system. The aim of this study was to assess the role of STK25 in the control of lipid metabolism in human liver. Methods Intracellular fat deposition, lipid metabolism and insulin sensitivity were studied in immortalised human hepatocytes (IHHs) and HepG2 hepatocellular carcinoma cells in which STK25 was overexpressed or knocked down by small interfering RNA. The association between STK25 mRNA expression in human liver biopsies and hepatic fat content was analysed. Results Overexpression of STK25 in IHH and HepG2 cells enhanced lipid deposition by suppressing beta-oxidation and triacylglycerol (TAG) secretion, while increasing lipid synthesis. Conversely, knockdown of STK25 attenuated lipid accumulation by stimulating beta-oxidation and TAG secretion, while inhibiting lipid synthesis. Furthermore, TAG hydrolase activity was repressed in hepatocytes overexpressing STK25 and reciprocally increased in cells with STK25 knockdown. Insulin sensitivity was reduced in STK25-overexpressing cells and enhanced in STK25-deficient hepatocytes. We also found a statistically significant positive correlation between STK25 mRNA expression in human liver biopsies and hepatic fat content. Conclusions/interpretation Our data suggest that STK25 regulates lipid partitioning in human liver cells by controlling TAG synthesis as well as lipolytic activity and thereby NEFA release from lipid droplets for beta-oxidation and TAG secretion. Our findings highlight STK25 as a potential drug target for the prevention and treatment of type 2 diabetes.
  •  
6.
  • Amrutkar, Manoj, et al. (författare)
  • Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH
  • 2015
  • Ingår i: Faseb Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 29:4, s. 1564-1576
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease, and 10% to 20% of NAFLD patients progress to nonalcoholic steatohepatitis (NASH). The molecular pathways controlling progression to NAFLD/NASH remain poorly understood. We recently identified serine/threonine protein kinase 25 (STK25) as a regulator of whole-body insulin and glucose homeostasis. This study investigates the role of STK25 in liver lipid accumulation and NASH. Stk25 transgenic mice challenged with a high-fat diet displayed a dramatic increase in liver steatosis and hepatic insulin resistance compared to wild-type siblings. Focal fibrosis, hepatocellular damage, and inflammation were readily seen in transgenic but not wild-type livers. Transgenic livers displayed reduced beta-oxidation and triacylglycerol secretion, while lipid uptake and synthesis remained unchanged. STK25 was associated with lipid droplets, colocalizing with the main hepatic lipid droplet-coating protein adipose differentiation-related protein, the level of which was increased 3.8 +/- 0.7-fold in transgenic livers (P < 0.01), while a key hepatic lipase, adipose triacylglycerol lipase, was translocated from the lipid droplets surface to the cytoplasm, providing the likely mechanism underlying the effect of STK25. In summary, STK25 is a lipid droplet-associated protein that promotes NAFLD through control of lipid release from the droplets for beta-oxidation and triacylglycerol secretion. STK25 also drives pathogenesis of NASH.
  •  
7.
  • Amrutkar, Manoj, et al. (författare)
  • STK25 is a critical determinant in nonalcoholic steatohepatitis.
  • 2016
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - 1530-6860. ; 30:10, s. 3628-3643
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and 10-20% of patients with NAFLD progress to nonalcoholic steatohepatitis (NASH) with a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Despite its high medical importance, the molecular mechanisms controlling progression from simple liver steatosis to NASH remain elusive. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid deposition, systemic glucose, and insulin homeostasis. To elucidate the role of STK25 in the development of NASH, we challenged Stk25-knockout and transgenic mice with a methionine and choline-deficient (MCD) diet. We show that Stk25(-/-) mice are protected against MCD-diet-induced NASH, as evidenced by repressed liver steatosis, oxidative damage, inflammation, and fibrosis, whereas Stk25 transgenic mice developed a more severe NASH phenotype, compared with corresponding wild-type littermates. Consistently, NASH features were suppressed in STK25-deficient human hepatocytes cultured in MCD medium, and reciprocally enhanced in STK25-overexpressing cells. We also found a significant positive correlation in human liver biopsies between STK25 expression and NASH development. The study provides evidence for multiple roles of STK25 in NASH pathogenesis and future investigations to address the potential therapeutic relevance of pharmacological STK25 inhibitors in prevention and treatment of NASH are warranted.-Amrutkar, M., Chursa, U., Kern, M., Nuñez-Durán, E., Ståhlman, M., Sütt, S., Borén, J., Johansson, B. R., Marschall, H.-U., Blüher, M., Mahlapuu, M. STK25 is a critical determinant in nonalcoholic steatohepatitis.
  •  
8.
  • Andersson, Linda, 1973, et al. (författare)
  • Deficiency in perilipin 5 reduces mitochondrial function and membrane depolarization in mouse hearts.
  • 2017
  • Ingår i: The international journal of biochemistry & cell biology. - : Elsevier BV. - 1878-5875 .- 1357-2725. ; 91:Pt A, s. 9-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Myocardial triglycerides stored in lipid droplets are important in regulating the intracellular delivery of fatty acids for energy generation in mitochondria, for membrane biosynthesis, and as agonists for intracellular signaling. Previously, we showed that deficiency in the lipid droplet protein perilipin 5 (Plin5) markedly reduces triglyceride storage in cardiomyocytes and increases the flux of fatty acids into phospholipids. Here, we investigated whether Plin5 deficiency in cardiomyocytes alters mitochondrial function. We found that Plin5 deficiency reduced mitochondrial oxidative capacity. Furthermore, in mitochondria from Plin5((-/)(-)) hearts, the fatty acyl composition of phospholipids in mitochondrial membranes was altered and mitochondrial membrane depolarization was markedly compromised. These findings suggest that mitochondria isolated from hearts deficient in Plin5, have specific functional defects.
  •  
9.
  • Baghdasaryan, A., et al. (författare)
  • Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis
  • 2016
  • Ingår i: Journal of Hepatology. - : Elsevier BV. - 0168-8278. ; 64:3, s. 674-681
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Approximately 95% of bile acids (BAs) excreted into bile are reabsorbed in the gut and circulate back to the liver for further biliary secretion. Therefore, pharmacological inhibition of the ileal apical sodium-dependent BA transporter (ASBT/SLC10A2) may protect against BA-mediated cholestatic liver and bile duct injury. Methods: Eight week old Mdr2(-/-) (Abcb4(-/-)) mice (model of cholestatic liver injury and sclerosing cholangitis) received either a diet supplemented with A4250 (0.01% w/w) - a highly potent and selective ASBT inhibitor - or a chow diet. Liver injury was assessed biochemically and histologically after 4 weeks of A4250 treatment. Expression profiles of genes involved in BA homeostasis, inflammation and fibrosis were assessed via RT-PCR from liver and ileum homogenates. Intestinal inflammation was assessed by RNA expression profiling and immunohistochemistry. Bile flow and composition, as well as biliary and fecal BA profiles were analyzed after 1 week of ASBT inhibitor feeding. Results: A4250 improved sclerosing cholangitis in Mdr2(-/-) mice and significantly reduced serum alanine aminotransferase, alkaline phosphatase and BAs levels, hepatic expression of proinflammatory (Tnf-alpha, Vcam1, Mcp-1) and pro-fibrogenic (Col1a1, Col1a2) genes and bile duct proliferation (mRNA and immunohistochemistry for cytokeratin 19 (CK19)). Furthermore, A4250 significantly reduced bile flow and biliary BA output, which correlated with reduced Bsep transcription, while Ntcp and Cyp7a1 were induced. Importantly A4250 significantly reduced biliary BA secretion but preserved HCO3- and biliary phospholipid secretion resulting in an increased HCO3-/BA and PL/BA ratio. In addition, A4250 profoundly increased fecal BA excretion without causing diarrhea and altered BA pool composition, resulting in diminished concentrations of primary BAs tauro-beta-muricholic acid and taurocholic acid. Conclusions: Pharmacological ASBT inhibition attenuates cholestatic liver and bile duct injury by reducing biliary BA concentrations in mice. (C) 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
  •  
10.
  • Behr, A. C., et al. (författare)
  • Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells
  • 2020
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 94, s. 1673-1686
  • Tidskriftsartikel (refereegranskat)abstract
    • Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are man-made chemicals that are used for the fabrication of many products with water- and dirt-repellent properties. The toxicological potential of both substances is currently under debate. In a recent Scientific Opinion, the European Food Safety Authority (EFSA) has identified increased serum total cholesterol levels in humans as one major critical effect being associated with exposure to PFOA or PFOS. In animal studies, both substances induced a decrease of serum cholesterol levels, and the underlying molecular mechanism(s) for these opposed effects are unclear so far. In the present study, we examined the impact of PFOA and PFOS on cholesterol homoeostasis in the human HepaRG cell line as a model for human hepatocytes. Cholesterol levels in HepaRG cells were not affected by PFOA or PFOS, but both substances strongly decreased synthesis of a number of bile acids. The expression of numerous genes whose products are involved in synthesis, metabolism and transport of cholesterol and bile acids was strongly affected by PFOA and PFOS at concentrations above 10 mu M. Notably, both substances led to a strong decrease of CYP7A1, the key enzyme catalyzing the rate-limiting step in the synthesis of bile acids from cholesterol, both at the protein level and at the level of gene expression. Moreover, both substances led to a dilatation of bile canaliculi that are formed by differentiated HepaRG cells in vitro. Similar morphological changes are known to be induced by cholestatic agents in vivo. Thus, the strong impact of PFOA and PFOS on bile acid synthesis and bile canalicular morphology in our in vitro experiments may allow the notion that both substances have a cholestatic potential that is connected to the observed increased serum cholesterol levels in humans in epidemiological studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 112
Typ av publikation
tidskriftsartikel (109)
konferensbidrag (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (110)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Ståhlman, Marcus, 19 ... (110)
Borén, Jan, 1963 (70)
Marschall, Hanns-Ulr ... (23)
Bäckhed, Fredrik, 19 ... (23)
Adiels, Martin, 1976 (16)
Levin, Malin, 1973 (16)
visa fler...
Cansby, Emmelie, 198 ... (12)
Mahlapuu, Margit, 19 ... (12)
Wahlström, Annika, 1 ... (11)
Andersson, Linda, 19 ... (10)
Mattsson Hultén, Lil ... (9)
Nuñez Durán, Esther (9)
Klevstig, Martina (9)
Mardinoglu, Adil, 19 ... (8)
Björnson, Elias, 198 ... (8)
Amrutkar, Manoj (8)
Fogelstrand, Per, 19 ... (8)
Pilon, Marc, 1966 (8)
Nielsen, Jens B, 196 ... (6)
Taskinen, M. R. (6)
Omerovic, Elmir, 196 ... (6)
Romeo, Stefano, 1976 (6)
Levin, Max, 1969 (6)
Perkins, Rosie, 1965 (6)
Ruiz, Mario, 1984 (6)
Uhlén, Mathias (5)
Zhang, C. (5)
Lundqvist, Annika, 1 ... (5)
Olofsson, Sven-Olof, ... (5)
Jeppsson, Anders, 19 ... (5)
Mancina, Rosellina M ... (5)
Smith, Ulf, 1943 (5)
Scharin Täng, Margar ... (5)
Wiklund, Olov, 1943 (5)
Håversen, Liliana, 1 ... (5)
Arif, Muhammad (4)
Redfors, Björn (4)
Trauner, M (4)
Taskinen, Marja-Riit ... (4)
Hakkarainen, A. (4)
Lundbom, N. (4)
Fagerberg, Björn, 19 ... (4)
Johansson, Bengt R, ... (4)
Chursa, Urszula (4)
Sütt, Silva (4)
Drevinge, Christina, ... (4)
Mardani, Ismena (4)
Kovatcheva-Datchary, ... (4)
Devkota, Ranjan (4)
Kurhe, Yeshwant (4)
visa färre...
Lärosäte
Göteborgs universitet (109)
Chalmers tekniska högskola (23)
Karolinska Institutet (14)
Kungliga Tekniska Högskolan (8)
Lunds universitet (5)
Umeå universitet (3)
visa fler...
Stockholms universitet (2)
Örebro universitet (2)
Linköpings universitet (2)
Uppsala universitet (1)
Högskolan i Skövde (1)
Högskolan i Borås (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (112)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (92)
Naturvetenskap (32)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy