SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stalnacke P.) "

Sökning: WFRF:(Stalnacke P.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Grimvall, Anders, et al. (författare)
  • Time scales of nutrient losses from land to sea - A European perspective
  • 2000
  • Ingår i: Ecological Engineering. - 0925-8574 .- 1872-6992. ; 14:4, s. 363-371
  • Tidskriftsartikel (refereegranskat)abstract
    • Empirical data regarding the time scales of nutrient losses from soil to water and land to sea were reviewed. The appearance of strongly elevated concentrations of nitrogen and phosphorus in major European rivers was found to be primarily a post-war phenomenon. However, the relatively rapid water quality response to increased point source emissions and intensified agriculture does not imply that the reaction to decreased emissions will be equally rapid. Long-term fertilisation experiments have shown that important processes in the large-scale turnover of nitrogen operate on a time scale of decades up to at least a century, and in several major Eastern European rivers there is a remarkable lack of response to the dramatic decrease in the use of commercial fertilisers that started in the late 1980s. In Western Europe, studies of decreased phosphorus emissions have shown that riverine loads of this element can be rapidly reduced from high to moderate levels, whereas a further reduction, if achieved at all, may take decades. Together, the reviewed studies showed that the inertia of the systems that control the loss of nutrients from land to sea was underestimated when the present goal of a 50% reduction of the input of nutrients to the Baltic Sea and the North Sea was adopted. (C) 2000 Elsevier Science B.V.
  •  
4.
  • Laznik, M, et al. (författare)
  • Riverine input of nutrients to the Gulf of Riga - temporal and spatial variation
  • 1999
  • Ingår i: Journal of Marine Systems. - 0924-7963 .- 1879-1573. ; 23:1-3, s. 11-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Riverine transport is the, most important pathway for input of nutrients to the Gulf of Riga. The present study focused on updating existing estimates of the riverine nutrient contributions and on improving the favailable information on temporal and spatial variation in such input. The results show that the gulf received an average of 113,300 tons of nitrogen, 2050 tons of phosphorus and 64,900 tons of dissolved silica (DSi) annually during the time period 1977-1995. There was large interannual variation in loads, e.g., a factor two difference was found between the two most extreme years (1984 and 1990), this was attributed mainly to natural variation in water discharge. The seasonal distribution of nutrient loads exhibited a distinct pattern for practically all studied constituents, especially nitrate. Loads were high during the spring-flow and relatively low during the low-flow summer period. Examination of the spatial variation of nutrient loads showed that the Daugava River alone accounted for approximately 60% of the total riverine load. The highest area-specific loads of nitrate and phosphate were observed in the agriculturally dominated Lielupe River, and the highest loads of organic-nitrogen (org-N) and total phophorus (tot-P) were found in the Parnu River. However, the values for all the studied rivers and constituents were rather low (phosphorus) or moderate (nitrogen and silica) compared to those reported for many other drainage areas of the Baltic Sea. This was true despite the inefficient sewage treatment and intensive agriculture in the studied basins in the 1970s and 1980s. (C) 1999 Elsevier Science B.V. All rights reserved.
  •  
5.
  • Stalnacke, P., et al. (författare)
  • Integrated Water Resources Management
  • 2010
  • Ingår i: Irrigation and Drainage Systems. - : Springer Verlag (Germany). - 0168-6291 .- 1573-0654. ; 24:3-4, s. 155-159
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Stalnacke, P., et al. (författare)
  • Nitrogen surface water retention in the Baltic Sea drainage basin
  • 2015
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 19:2, s. 981-996
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we estimate the surface water retention of nitrogen (N) in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW) for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated at 570 000 t of N, giving a total surface water N retention of around 40 %. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N are retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (%) and share of lake area in the river drainage areas. For example in Gota alv, we estimated a total N retention of 72 %, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vanern primarily). The obtained results will hopefully enable the Helsinki Commission (HELCOM) to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP), as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.
  •  
7.
  • Stalnacke, P., et al. (författare)
  • Semiparametric approaches to flow normalization and source apportionment of substance transport in rivers
  • 2001
  • Ingår i: Environmetrics. - : Wiley. - 1180-4009 .- 1099-095X. ; 12:3, s. 233-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Statistical analysis of relationships between time series of data exhibiting seasonal variation is often of great interest in environmental monitoring and assessment. The present study focused on regression models with time-varying intercept and slope parameters. In particular, we derived and tested semiparametric models in which rapid interannual and interseasonal variation in the intercept were penalized in the search for a model that combined a good fit to data with smoothly varying parameters. Furthermore, we developed a software package for efficient estimation of the parameters of such models. Test runs on time series of runoff data and riverine loads of nutrients and chloride in the Rhine River showed that the proposed smoothing methods were particularly useful for analysis of time-varying linear relationships between time series of data with both seasonal variation and temporal trends. The predictivity of the semiparametric models was superior to that of conventional parametric models. In addition, normalization of observed annual loads to mean or minimum runoff produced smooth curves that provided convincing evidence of human impact on water quality. © 2001 John Wiley & Sons, Ltd.
  •  
8.
  • Wulff, Fredrik, et al. (författare)
  • Reduction of Baltic Sea Nutrient Inputs and Allocation of Abatement Costs Within the Baltic Sea Catchment
  • 2014
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 43:1, s. 11-25
  • Tidskriftsartikel (refereegranskat)abstract
    • The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion a,not sign.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy