SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Stepanenko V) "

Search: WFRF:(Stepanenko V)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fattibene, P, et al. (author)
  • The 4th international comparison on EPR dosimetry with tooth enamel Part 1: Report on the results
  • 2011
  • In: Radiation Measurements. - : Elsevier. - 1350-4487 .- 1879-0925. ; 46:9, s. 765-771
  • Journal article (peer-reviewed)abstract
    • This paper presents the results of the 4th International Comparison of in vitro electron paramagnetic resonance dosimetry with tooth enamel, where the performance parameters of tooth enamel dosimetry methods were compared among sixteen laboratories from all over the world. The participating laboratories were asked to determine a calibration curve with a set of tooth enamel powder samples provided by the organizers. Nine molar teeth extracted following medical indication from German donors and collected between 1997 and 2007 were prepared and irradiated at the Helmholtz Zentrum Munchen. Five out of six samples were irradiated at 0.1, 0.2, 0.5, 1.0 and 1.5 Gy air kerma; and one unirradiated sample was kept as control. The doses delivered to the individual samples were unknown to the participants, who were asked to measure each sample nine times, and to report the EPR signal response, the mass of aliquots measured, and the parameters of EPR signal acquisition and signal evaluation. Critical dose and detection limit were calculated by the organizers on the basis of the calibration-curve parameters obtained at every laboratory. For calibration curves obtained by measuring every calibration sample three times, the mean value of the detection limit was 205 mGy, ranging from 56 to 649 mGy. The participants were also invited to provide the signal response and the nominal dose of their current dose calibration curve (wherever available), the critical dose and detection limit of which were also calculated by the organizers.
  •  
2.
  • Golub, Malgorzata, et al. (author)
  • A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector
  • 2022
  • In: Geoscientific Model Development. - : Copernicus Publications. - 1991-959X .- 1991-9603. ; 15:11, s. 4597-4623
  • Journal article (peer-reviewed)abstract
    • Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
  •  
3.
  • Grant, Luke, et al. (author)
  • Attribution of global lake systems change to anthropogenic forcing
  • 2021
  • In: Nature Geoscience. - : Springer Nature. - 1752-0894 .- 1752-0908. ; 14:11, s. 849-854
  • Journal article (peer-reviewed)abstract
    • Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from single lake models. Here we uncover the human imprint on lakes worldwide using hindcasts and projections from five lake models. Reanalysed trends in lake temperature and ice cover in recent decades are extremely unlikely to be explained by pre-industrial climate variability alone. Ice-cover trends in reanalysis are consistent with lake model simulations under historical conditions, providing attribution of lake changes to anthropogenic climate change. Moreover, lake temperature, ice thickness and duration scale robustly with global mean air temperature across future climate scenarios (+0.9 °C °Cair–1, –0.033 m °Cair–1 and –9.7 d °Cair–1, respectively). These impacts would profoundly alter the functioning of lake ecosystems and the services they provide.
  •  
4.
  • Guseva, S., et al. (author)
  • Bulk Transfer Coefficients Estimated From Eddy-Covariance Measurements Over Lakes and Reservoirs
  • 2023
  • In: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 128:2
  • Journal article (peer-reviewed)abstract
    • The drag coefficient, Stanton number and Dalton number are of particular importance for estimating the surface turbulent fluxes of momentum, heat and water vapor using bulk parameterization. Although these bulk transfer coefficients have been extensively studied over the past several decades in marine and large-lake environments, there are no studies analyzing their variability for smaller lakes. Here, we evaluated these coefficients through directly measured surface fluxes using the eddy-covariance technique over more than 30 lakes and reservoirs of different sizes and depths. Our analysis showed that the transfer coefficients (adjusted to neutral atmospheric stability) were generally within the range reported in previous studies for large lakes and oceans. All transfer coefficients exhibit a substantial increase at low wind speeds (<3 m s(-1)), which was found to be associated with the presence of gusts and capillary waves (except Dalton number). Stanton number was found to be on average a factor of 1.3 higher than Dalton number, likely affecting the Bowen ratio method. At high wind speeds, the transfer coefficients remained relatively constant at values of 1.6.10(-3), 1.4.10(-3), 1.0.10(-3), respectively. We found that the variability of the transfer coefficients among the lakes could be associated with lake surface area. In flux parameterizations at lake surfaces, it is recommended to consider variations in the drag coefficient and Stanton number due to wind gustiness and capillary wave roughness while Dalton number could be considered as constant at all wind speeds. Plain Language Summary In our study, we investigate the bulk transfer coefficients, which are of particular importance for estimation the turbulent fluxes of momentum, heat and water vapor in the atmospheric surface layer, above lakes and reservoirs. The incorrect representation of the surface fluxes above inland waters can potentially lead to errors in weather and climate prediction models. For the first time we made this synthesis using a compiled data set consisting of existing eddy-covariance flux measurements over 23 lakes and 8 reservoirs. Our results revealed substantial increase of the transfer coefficients at low wind speeds, which is often not taken into account in models. The observed increase in the drag coefficient (momentum transfer coefficient) and Stanton number (heat transfer coefficient) could be associated with the presence of wind gusts and capillary waves. In flux parameterizations at lake surface, it is recommended to consider them for accurate flux representation. Although the bulk transfer coefficients were relatively constant at high wind speeds, we found that the Stanton number systematically exceeds the Dalton number (water vapor transfer coefficient), despite the fact they are typically considered to be equal. This difference may affect the Bowen ratio method and result in biased estimates of lake evaporation.
  •  
5.
  • Guseva, S., et al. (author)
  • Variable Physical Drivers of Near-Surface Turbulence in a Regulated River
  • 2021
  • In: Water resources research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 57:11
  • Journal article (peer-reviewed)abstract
    • Inland waters, such as lakes, reservoirs and rivers, are important sources of climate forcing trace gases. A key parameter that regulates the gas exchange between water and the atmosphere is the gas transfer velocity, which itself is controlled by near-surface turbulence in the water. While in lakes and reservoirs, near-surface turbulence is mainly driven by atmospheric forcing, in shallow rivers and streams it is generated by bottom friction of gravity-forced flow. Large rivers represent a transition between these two cases. Near-surface turbulence has rarely been measured in rivers and the drivers of turbulence have not been quantified. We analyzed continuous measurements of flow velocity and quantified turbulence as the rate of dissipation of turbulent kinetic energy over the ice-free season in a large regulated river in Northern Finland. Measured dissipation rates agreed with predictions from bulk parameters, including mean flow velocity, wind speed, surface heat flux, and with a one-dimensional numerical turbulence model. Values ranged from to . Atmospheric forcing or gravity was the dominant driver of near-surface turbulence for similar fraction of the time. Large variability in near-surface dissipation rate occurred at diel time scales, when the flow velocity was strongly affected by downstream dam operation. By combining scaling relations for boundary-layer turbulence at the river bed and at the air-water interface, we derived a simple model for estimating the relative contributions of wind speed and bottom friction of river flow as a function of depth.Plain Language SummaryInland water bodies such as lakes, reservoirs and rivers are an important source of climate forcing trace gases to the atmosphere. Gas exchange between water and the atmosphere is regulated by the gas transfer velocity and the concentration difference between the water surface and the atmosphere. The gas transfer velocity depends on near-surface turbulence, but robust formulations have not been developed for river systems. Their surface area is sufficiently large for meteorological forcing to cause turbulence, as in lakes and reservoirs, but turbulence generated from bed and internal friction of gravity-driven flows is also expected to contribute. Here we quantify near-surface turbulence using data from continuous air and water side measurements conducted over the ice-free season in a large subarctic regulated river in Finland. We find that turbulence, quantified as the dissipation rate of turbulent kinetic energy, is well described using equations for predicting turbulence from meteorological data for sufficiently high wind speeds whereas the contribution from bottom shear dominated at higher flow velocities. A one-dimensional river model successfully captured these processes. We provide a fundamental model for estimating the relative contributions of atmospheric forcing and bottom friction as a function of depth.
  •  
6.
  • Soroka, Inna L., et al. (author)
  • Effect of synthesis temperature on the morphology and stability of copper(I) hydride nanoparticles
  • 2013
  • In: CrystEngComm. - : Royal Society of Chemistry (RSC). - 1466-8033. ; 15:42, s. 8450-8460
  • Journal article (peer-reviewed)abstract
    • The effect of synthesis temperature on the morphology and stability of copper(I) hydride nanoparticles is studied. Monovalent copper hydride is obtained by reduction of Cu2+ sulfate with hypophosphorous acid at temperatures ranging from 45 degrees C to 75 degrees C. The CuH nanoparticles that formed have the shape of desert roses and are found to be very porous. The lattice parameter, size, and morphology of these nanoparticles depend on the synthesis temperature. CuH is a metastable compound. In air under ambient conditions, it first decomposes into copper metal and hydrogen gas and then the copper oxidizes. The copper particles that are left after the decomposition of copper(I) hydride in air have the same desert-rose morphology as the CuH nanoparticles. The copper particles with desert-rose shapes are observed for the first time. Copper(I) hydride decomposes slower in an aqueous environment than in air to form copper(I) oxide as the final product through formation of hydrated copper(I) hydroxide as an intermediate phase. The retarded decomposition of CuH in water may be explained by the formation of a protective CuOH center dot H2O layer on the surface of copper(I) hydride.
  •  
7.
  • Vanderkelen, I., et al. (author)
  • Global Heat Uptake by Inland Waters
  • 2020
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:12
  • Journal article (peer-reviewed)abstract
    • Heat uptake is a key variable for understanding the Earth system response to greenhouse gas forcing. Despite the importance of this heat budget, heat uptake by inland waters has so far not been quantified. Here we use a unique combination of global‐scale lake models, global hydrological models and Earth system models to quantify global heat uptake by natural lakes, reservoirs, and rivers. The total net heat uptake by inland waters amounts to 2.6 ± 3.2 ×1020 J over the period 1900–2020, corresponding to 3.6% of the energy stored on land. The overall uptake is dominated by natural lakes (111.7%), followed by reservoir warming (2.3%). Rivers contribute negatively (‐14%) due to a decreasing water volume. The thermal energy of water stored in artificial reservoirs exceeds inland water heat uptake by a factor ∼10.4. This first quantification underlines that the heat uptake by inland waters is relatively small, but non‐negligible.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view