SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Studer Lorenz) "

Sökning: WFRF:(Studer Lorenz)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barker, Roger A., et al. (författare)
  • Human Trials of Stem Cell-Derived Dopamine Neurons for Parkinson's Disease : Dawn of a New Era
  • 2017
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909. ; 21:5, s. 569-573
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cell-based therapies for Parkinson's disease are moving into a new and exciting era, with several groups pursuing clinical trials with pluripotent stem cell (PSC)-derived dopamine neurons. As many groups have ongoing or completed GMP-level cell manufacturing, we highlight key clinical translation considerations from our recent fourth GForce-PD meeting. Stem cell-based therapies for Parkinson's disease are moving into a new and exciting era, with several groups pursuing clinical trials with pluripotent stem cell (PSC)-derived dopamine neurons. As many groups have ongoing or completed GMP-level cell manufacturing, we highlight key clinical translation considerations from our recent fourth GForce-PD meeting.
  •  
2.
  • Chan, Yi-Hao, et al. (författare)
  • Human TMEFF1 is a restriction factor for herpes simplex virus in the brain
  • 2024
  • Ingår i: NATURE. - 0028-0836 .- 1476-4687. ; 632, s. 390-400
  • Tidskriftsartikel (refereegranskat)abstract
    • Most cases of herpes simplex virus 1 (HSV-1) encephalitis (HSE) remain unexplained1,2. Here, we report on two unrelated people who had HSE as children and are homozygous for rare deleterious variants of TMEFF1, which encodes a cell membrane protein that is preferentially expressed by brain cortical neurons. TMEFF1 interacts with the cell-surface HSV-1 receptor NECTIN-1, impairing HSV-1 glycoprotein D- and NECTIN-1-mediated fusion of the virus and the cell membrane, blocking viral entry. Genetic TMEFF1 deficiency allows HSV-1 to rapidly enter cortical neurons that are either patient specific or derived from CRISPR-Cas9-engineered human pluripotent stem cells, thereby enhancing HSV-1 translocation to the nucleus and subsequent replication. This cellular phenotype can be rescued by pretreatment with type I interferon (IFN) or the expression of exogenous wild-type TMEFF1. Moreover, ectopic expression of full-length TMEFF1 or its amino-terminal extracellular domain, but not its carboxy-terminal intracellular domain, impairs HSV-1 entry into NECTIN-1-expressing cells other than neurons, increasing their resistance to HSV-1 infection. Human TMEFF1 is therefore a host restriction factor for HSV-1 entry into cortical neurons. Its constitutively high abundance in cortical neurons protects these cells from HSV-1 infection, whereas inherited TMEFF1 deficiency renders them susceptible to this virus and can therefore underlie HSE. A study of two childhood cases of herpes simplex encephalitis shows that TMEFF1 interacts with the HSV-1 cell-surface receptor NECTIN-1, preventing HSV-1 from fusing with the cell membrane and entering cortical neurons.
  •  
3.
  • Chan, Yi-Hao, et al. (författare)
  • SARS-CoV-2 brainstem encephalitis in human inherited DBR1 deficiency.
  • 2024
  • Ingår i: The Journal of experimental medicine. - 1540-9538. ; 221:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherited deficiency of the RNA lariat-debranching enzyme 1 (DBR1) is a rare etiology of brainstem viral encephalitis. The cellular basis of disease and the range of viral predisposition are unclear. We report inherited DBR1 deficiency in a 14-year-old boy who suffered from isolated SARS-CoV-2 brainstem encephalitis. The patient is homozygous for a previously reported hypomorphic and pathogenic DBR1 variant (I120T). Consistently, DBR1 I120T/I120T fibroblasts from affected individuals from this and another unrelated kindred have similarly low levels of DBR1 protein and high levels of RNA lariats. DBR1 I120T/I120T human pluripotent stem cell (hPSC)-derived hindbrain neurons are highly susceptible to SARS-CoV-2 infection. Exogenous WT DBR1 expression in DBR1 I120T/I120T fibroblasts and hindbrain neurons rescued the RNA lariat accumulation phenotype. Moreover, expression of exogenous RNA lariats, mimicking DBR1 deficiency, increased the susceptibility of WT hindbrain neurons to SARS-CoV-2 infection. Inborn errors of DBR1 impair hindbrain neuron-intrinsic antiviral immunity, predisposing to viral infections of the brainstem, including that by SARS-CoV-2.
  •  
4.
  • Diener, Johanna, et al. (författare)
  • Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4
  • 2021
  • Ingår i: Nature Communications. - : Nature Portfolio. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanoma cells rely on developmental programs during tumor initiation and progression. Here we show that the embryonic stem cell (ESC) factor Sall4 is re-expressed in the Tyr::Nras(Q61K); Cdkn2a(-/-) melanoma model and that its expression is necessary for primary melanoma formation. Surprisingly, while Sall4 loss prevents tumor formation, it promotes micrometastases to distant organs in this melanoma-prone mouse model. Transcriptional profiling and in vitro assays using human melanoma cells demonstrate that SALL4 loss induces a phenotype switch and the acquisition of an invasive phenotype. We show that SALL4 negatively regulates invasiveness through interaction with the histone deacetylase (HDAC) 2 and direct co-binding to a set of invasiveness genes. Consequently, SALL4 knock down, as well as HDAC inhibition, promote the expression of an invasive signature, while inhibition of histone acetylation partially reverts the invasiveness program induced by SALL4 loss. Thus, SALL4 appears to regulate phenotype switching in melanoma through an HDAC2-mediated mechanism. Melanoma cells can switch between proliferative and invasive phenotypes. Here the authors show that the embryonic stem cell factor Sall4 is a negative regulator of melanoma phenotype switching where its loss leads to the acquisition of an invasive phenotype, due to derepression of invasiveness genes.
  •  
5.
  • Ganat, Yosif M., et al. (författare)
  • Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment
  • 2012
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 122:8, s. 2928-2939
  • Tidskriftsartikel (refereegranskat)abstract
    • Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell therapy. Here, we used 3 transgenic mouse ESC reporter lines to mark DA neurons at 3 stages of differentiation (early, middle, and late) following induction of differentiation using Hes5::GFP, Nurr1::GFP, and Pitx3::YFP transgenes, respectively. Transplantation of FACS-purified cells from each line resulted in DA neuron engraftment, with the mid-stage and late-stage neuron grafts being composed almost exclusively of midbrain DA neurons. Mid-stage neuron cell grafts had the greatest amount of DA neuron survival and robustly induced recovery of motor deficits in hemiparkinsonian mice. Our data suggest that the Nurrl(+) stage (middle stage) of neuronal differentiation is particularly suitable for grafting ESC-derived DA neurons. Moreover, global transcriptome analysis of progeny from each of the ESC reporter lines revealed expression of known midbrain DA neuron genes and also uncovered previously uncharacterized midbrain genes. These data demonstrate remarkable fate specificity of ESC-derived DA neurons and outline a sequential stage-specific ESC reporter line paradigm for in vivo gene discovery.
  •  
6.
  • Parmar, Malin, et al. (författare)
  • GFORCE-PD still going strong in 2016
  • 2017
  • Ingår i: npj Parkinson's Disease. - : Springer Science and Business Media LLC. - 2373-8057. ; 3
  • Forskningsöversikt (refereegranskat)abstract
    • In 2014, a new initiative was undertaken by groups working on plans for the transplantation of stem-cell-based derived dopaminergic neurons for treating Parkinson’s disease patients. This GForce-PD group held its annual meeting on 18–19 April 2016 in Chicago at Rush University to discuss their progress and the challenges that the translation of this experimental therapy still faces. Over 2 days, the key issues were discussed around the cell lines that will be used, the differentiation protocols, preclinical testing, GMP-adaptation, and cell manufacturing to allow first in human clinical trials, which are anticipated to start in 2017–2018. GForce-PD members also discussed how they can improve outreach and be of better service to the Parkinson's disease (PD) community and help them to make the best possible decisions when pursuing stem cell treatments.
  •  
7.
  • Studer, Lorenz, et al. (författare)
  • Effects of brain-derived neurotrophic factor on neuronal structure of dopaminergic neurons in dissociated cultures of human fetal mesencephalon
  • 1996
  • Ingår i: Experimental Brain Research. - 0014-4819. ; 108:2, s. 328-336
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain-derived neurotrophic factor (BDNF) has been shown to promote the survival of cultured fetal mesencephalic dopaminergic neurons of rat and human origin. In the present study, BDNF was tested for its ability to influence neuronal structure of dopaminergic neurons in dissociated cultures of human fetal ventral mesencephalon after 7 days in vitro. Following immunocytochemical staining for tyrosine hydroxylase, all surviving dopaminergic neurons were counted. Computer-assisted three-dimensional reconstructions of uniform randomly selected neurons cultured with 50 ng/ml BDNF (n = 120) or without BDNF (n = 80) were made. BDNF increased the number of surviving human dopaminergic neurons by 76%. Mean soma profile area was significantly enlarged by 18% in BDNF-treated neurons as compared to controls. Analysis of parameters of neuritic size and complexity in these cultures revealed that combined neuritic length, combined neuritic volume, and neuritic field area were increased by 60%, 125% and 129%, respectively, and the mean number of segments per cell was increased by 41%. A change in neurite complexity in BDNF-treated cultures was further confirmed by the Sholl's concentric sphere analysis. These results demonstrate that BDNF promotes development and differentiation of human fetal dopaminergic neurons in vitro.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy