SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Talide Loic) "

Sökning: WFRF:(Talide Loic)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bernacka Wojcik, Iwona, et al. (författare)
  • Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants
  • 2023
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.
  •  
2.
  • Wang, Wei, et al. (författare)
  • Aspen growth is not limited by starch reserves
  • 2022
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 32, s. 3619-3627
  • Tidskriftsartikel (refereegranskat)abstract
    • All photosynthetic organisms balance CO2 assimilation with growth and carbon storage. Stored carbon is used for growth at night and when demand exceeds assimilation. Gaining a mechanistic understanding of carbon partitioning between storage and growth in trees is important for biological studies and for estimating the potential of terrestrial photosynthesis to sequester anthropogenic CO2 emissions.(1,2) Starch represents the main carbon storage in plants.(3,4) To examine the carbon storage mechanism and role of starch during tree growth, we generated and characterized low-starch hybrid aspen (Populus tremula x tremuloides) trees using CRISPR-Cas9-mediated gene editing of two PHOSPHOGLUCOMUTASE (PGM) genes coding for plastidial PGM isoforms essential for starch biosynthesis. We demonstrate that starch deficiency does not reduce tree growth even in short days, showing that starch is not a critical carbon reserve during diel growth of aspen. The low-starch trees assimilated up to similar to 30% less CO2 compared to the wild type under a range of irradiance levels, but this did not reduce growth or wood density. This implies that aspen growth is not limited by carbon assimilation under benign growth conditions. Moreover, the timing of bud set and bud flush in the low-starch trees was not altered, implying that starch reserves are not critical for the seasonal growth-dormancy cycle. The findings are consistent with a passive starch storage mechanism that contrasts with the annual Arabidopsis and indicate that the capacity of the aspen to absorb CO2 is limited by the rate of sink tissue growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy