SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Thirolf P. G.) "

Search: WFRF:(Thirolf P. G.)

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rodriguez, D., et al. (author)
  • MATS and LaSpec : High-precision experiments using ion traps and lasers at FAIR
  • 2010
  • In: The European physical journal. Special topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 183, s. 1-123
  • Research review (peer-reviewed)abstract
    • Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique ""fingerprint"". Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.
  •  
2.
  • Niedermaier, O., et al. (author)
  • "Safe" Coulomb excitation of Mg-30
  • 2005
  • In: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 94:17, s. 172501 (artno)-
  • Journal article (peer-reviewed)abstract
    • We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient γ spectrometer MINIBALL. Using Mg-30 ions accelerated to an energy of 2.25 MeV/u together with a thin Ni-nat target, Coulomb excitation of the first excited 2(+) states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation γ-ray yields the B(E2;0(gs)(+)→ 2(1)(+)) value of Mg-30 was determined to be 241(31)e(2) fm(4). Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope Mg-30 resides outside the "island of inversion."
  •  
3.
  • Niedermaier, O., et al. (author)
  • The neutron-rich Mg isotopes: first results from MINIBALL at REX-ISOLDE
  • 2005
  • In: Nuclear Physics A. - : Elsevier BV. - 0375-9474. ; 752, s. 273-273
  • Journal article (peer-reviewed)abstract
    • We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient γ spectrometer MINIBALL. Using Mg-30 ions accelerated to an energy of 2.25 MeV/u together with a thin Ni-nat target, Coulomb excitation of the first excited 2(+) states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation γ-ray yields the B(E2;0(gs)(+)→ 2(1)(+)) value of Mg-30 was determined to be 241(31)e(2) fm(4). Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope Mg-30 resides outside the "island of inversion."
  •  
4.
  • Scheit, H., et al. (author)
  • Coulomb excitation of neutron-rich beams at REX-ISOLDE
  • 2005
  • In: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-601X .- 1434-6001. ; 25:Suppl. 1, s. 397-402
  • Conference paper (peer-reviewed)abstract
    • After the successful commissioning of the radioactive beam experiment at ISOLDE (REX-ISOLDE) - an accelerator for exotic nuclei produced by ISOLDE - in 2002 and the promotion to a CERN user facility in 2003, first physics experiments using these beams were performed. Initial experiments focused on the region of deformation in the vicinity of the neutron-rich Na and Mg isotopes. Preliminary results on the neutron-rich Na and Mg isotopes show the high potential and physics opportunities offered by the exotic isotope accelerator REX in conjunction with the modern Germanium gamma spectrometer MINIBALL.
  •  
5.
  • Warr, N., et al. (author)
  • The Miniball spectrometer
  • 2013
  • In: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001. ; 49:3
  • Journal article (peer-reviewed)abstract
    • The Miniball germanium detector array has been operational at the REX (Radioactive ion beam EXperiment) post accelerator at the Isotope Separator On-Line facility ISOLDE at CERN since 2001. During the last decade, a series of successful Coulomb excitation and transfer reaction studies have been performed with this array, utilizing the unique and high-quality radioactive ion beams which are available at ISOLDE. In this article, an overview is given of the technical details of the full Miniball setup, including a description of the.-ray and particle detectors, beam monitoring devices and methods to deal with beam contamination. The specific timing properties of the REX-ISOLDE facility are highlighted to indicate the sensitivity that can be achieved with the full Miniball setup. The article is finalized with a summary of some physics highlights at REX-ISOLDE and the utilization of the Miniball germanium detectors at other facilities.
  •  
6.
  • Habs, D., et al. (author)
  • The REX-ISOLDE project
  • 2000
  • In: Hyperfine Interactions. - 0304-3843 .- 1572-9540. ; 129:1-4, s. 43-66
  • Journal article (peer-reviewed)abstract
    • The Radioactive Beam Experiment REX-ISOLDE [1-3] is a pilot experiment at ISOLDE (CERN) testing the new concept of post acceleration of radioactive ion beams by using charge breeding of the ions in a high charge state ion source and the efficient acceleration of the highly charged ions in a short LINAC using modern ion accelerator structures. In order to prepare the ions for the experiments singly charged radioactive ions from the on-line mass separator ISOLDE will be cooled and bunched in a Penning trap, charge bred in an electron beam ion source (EBIS) and finally accelerated in the LINAC. The LINAC consists of a radiofrequency quadrupole (RFQ) accelerator, which accelerates the ions up to 0.3 MeV/u, an interdigital H-type (IH) structure with a final energy between 1.1 and 1.2 MeV/u and three seven gap resonators, which allow the variation of the final energy. With an energy of the radioactive beams between 0.8 MeV/u and 2.2 MeV/u a wide range of experiments in the field of nuclear spectroscopy, astrophysics and solid state physics will be addressed by REX-ISOLDE.
  •  
7.
  • Ilieva, S., et al. (author)
  • Coulomb excitation of neutron-rich Cd isotopes
  • 2014
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 89:1
  • Journal article (peer-reviewed)abstract
    • The isotopes (122),(124),Cd-126 were studied in a "safe" Coulomb-excitation experiment at the radioactive ion-beam facility REX-ISOLDE at CERN. The reduced transition probabilities B(E2; 0(g. s)(vertical bar) -> 2(1)(+)) and limits for the quadrupole moments of the first 2(+) excited states in the three isotopes were determined. The onset of collectivity in the vicinity of the Z = 50 and N = 82 shell closures is discussed by comparison with shell model and beyond mean-field calculations.
  •  
8.
  • Kester, O., et al. (author)
  • Accelerated radioactive beams from REX-ISOLDE
  • 2003
  • In: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. - 0168-583X. ; 204, s. 20-20
  • Conference paper (peer-reviewed)abstract
    • In 2001 the linear accelerator of the Radioactive beam EXperiment (REX-ISOLDE) delivered for the first time accelerated radioactive ion beams, at a beam energy of 2 MeV/u. REX-ISOLDE uses the method of charge-state breeding, in order to enhance the charge state of the ions before injection into the LINAC. Radioactive singly-charged ions from the on-line mass separator ISOLDE are first accumulated in a Penning trap, then charge bred to an A/q
  •  
9.
  • Kröll, Th, et al. (author)
  • Quadrupole Collectivity of neutron-rich nuclei around 132Sn
  • 2008
  • In: Frontiers in Nuclear Structure, Astrophysics, and Reactions, FINUSTAR 2007. - : AIP. - 9780735405325 ; 1012, s. 296-299
  • Conference paper (peer-reviewed)abstract
    • We report on the "safe" Coulomb excitation of neutron-rich Cd, Xe, and Ba isotopes in the vicinity of the doubly-magic nucleus 132Sn. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The γ-decay of excited states has been detected by the MINIBALL array. The presented preliminary results for the B(E2) values are consistent with expectations from phenomenological systematics and will be compared with theoretical calculations.
  •  
10.
  • Kröll, T., et al. (author)
  • Transfer Reactions on Neutron-rich Nuclei at REX-ISOLDE
  • 2009
  • In: AIP Conference Proceedings. - 1551-7616 .- 0094-243X. ; 1165, s. 363-368 461
  • Conference paper (peer-reviewed)abstract
    • We report on one- and two-neutron transfer reactions to study the single-particle properties of nuclei at the border of the "island of inversion". The (d,p)- and (t,p)-reactions in inverse kinematics on the neutron-rich isotope Mg-30, delivered as radioactive beam by the REX-ISOLDE facility, have been investigated. The outgoing protons have been detected and identified by a newly built array of Si detectors. The gamma-decay of excited states has been detected in coincidence by the MINIBALL array. First results for Mg-31 and from the search for the second, spherical, 0(+) state in Mg-32 are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view