SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Toivakka Martti) "

Sökning: WFRF:(Toivakka Martti)

  • Resultat 1-10 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aromaa, Mikko, et al. (författare)
  • Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using Liquid Flame Spray
  • 2012
  • Ingår i: Journal of Aerosol Science. - : Elsevier BV. - 0021-8502. ; 52, s. 57-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium dioxide nanoparticles are synthesised in aerosol phase using the Liquid Flame Spray method. The particles are deposited in-situ on paperboard, glass and metal surfaces. According to literature, titanium dioxide is supposed to be hydrophilic. However, hydrophobic behaviour is observed on paperboard substrates but not on metal or glass substrates. Here, the water contact angle behaviour of the deposits is studied along with XRD, XPS, BET and HR-TEM. The deposits are compared with silicon dioxide deposits having, as expected, hydrophilic properties synthesised with the same method. It seems probable that the deposition process combusts some substrate material from the paperboard substrate, which later on condenses on top of the deposit to form a carbonaceous layer causing the hydrophobic behaviour of the TiO2 deposit. The similar layer does not form when depositing the nanoparticles on a metal or glass surfaces. The observations are more than purely aerosol phenomena. However, they are quite essential in nanoparticle deposition from the aerosol phase onto a substrate which is commonly utilised. (C) 2012 Elsevier Ltd. All rights reserved.
  •  
2.
  • Asadpoordarvish, Amir, 1984-, et al. (författare)
  • Light-Emitting Paper
  • 2015
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 25:21, s. 3238-3245
  • Tidskriftsartikel (refereegranskat)abstract
    • A solution-based fabrication of flexible and light-weight light-emitting devices on paper substrates is reported. Two different types of paper substrates are coated with a surface-emitting light-emitting electrochemical cell (LEC) device: a multilayer-coated specialty paper with an intermediate surface roughness of 0.4 μm and a low-end and low-cost copy paper with a large surface roughness of 5 μm. The entire device fabrication is executed using a handheld airbrush, and it is notable that all of the constituent layers are deposited from solution under ambient air. The top-emitting paper-LECs are highly flexible, and display a uniform light emission with a luminance of 200 cd m−2 at a current conversion efficacy of 1.4 cd A−1.
  •  
3.
  • Blomquist, Nicklas, 1987-, et al. (författare)
  • Influence of Substrate in Roll-to-roll Coated Nanographite Electrodes for Metal-free Supercapacitors
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the high electric conductivity and large surface area of nanographites, such as graphene and graphite nanoplatlets, these materials have gained a large interest for use in energy storage devices. However, due to the thin flake geometry, the viscosity of aqueous suspensions containing these materials is high even at low solids contents. This together with the use of high viscosity bio-based binders makes it challenging to coat in a roll-to-roll process with sufficient coating thickness. Electrode materials for commercial energy storage devices are often suspended by organic solvents at high solids contents and coated onto metal foils used as current-collectors. Another interesting approach is to coat the electrode onto the separator, to enable large-scale production of flat cell stacks. Here, we demonstrate an alternative, water-based approach that utilize slot-die coating to coat aqueous nanographite suspension with nanocellulose binder onto the paper separator, and onto the current collector as reference, in aqueous metal-free supercapacitors. The results show that the difference in device equivalent series resistance (ESR) due to interfacial resistance between electrode and current collector was much lower than expected and thus similar or lower compared to other studies with a aqueous supercapacitors. This indicates that electrode coated paper separator substrates could be a promising approach and a possible route for manufacturing of low-cost, environmentally friendly and metal-free energy storage devices. 
  •  
4.
  • Brobbey, Kofi, et al. (författare)
  • Effect of plasma coating on antibacterial activity of silver nanoparticles
  • 2019
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 672, s. 75-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Silver nanoparticles (NPs) are known to provide antimicrobial properties for surfaces. However, there are environmental concerns due to reports of toxicity after exposure to the environment during or after end-use. Immobilizing silver NPs to the surface of substrates could ensure that particles are readily available for antibacterial activity with limited environmental exposure. A plasma coating on top of silver NPs could improve the adhesion of NPs to a substrate, but it could also impede the release of silver NPs completely. Furthermore, silver has been shown to require direct contact to demonstrate antibacterial activity. This study demonstrates immobilization of silver NPs with plasma coating onto a surface while maintaining its antibacterial properties. Silver NPs are simultaneously synthesized and deposited onto a surface with liquid flame spray aerosol technique followed by hexamethyldisiloxane plasma coating to immobilize the NPs. Atomic force microscope scratch testing is used to demonstrate improved nanoparticle adhesion. Antibacterial activity against gram-negative Escherichia coli is maintained even for plasma coating thicknesses of 195 nm. NP adhesion to the surface is significantly improved. Gram-positive Staphylococcus aureus was found be resistant to all the plasma-coated samples. The results show promise of using plasma coating technology for limiting NP exposure to environment.
  •  
5.
  • Brobbey, Kofi, et al. (författare)
  • High-speed production of antibacterial fabrics using liquid flame spray
  • 2019
  • Ingår i: Textile research journal. - : SAGE Publications Ltd. - 0040-5175 .- 1746-7748. ; 90:5-6, s. 503-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Healthcare associated infections (HAIs) are known as one of the major problems of the modern healthcare system, which result in additional cost and mortality. It has also been shown that pathogenic bacteria are mostly transferred via surfaces in healthcare settings. Therefore, antibacterial surfaces, which include fabrics and textiles, can be used in a healthcare environment to reduce the transfer of pathogenic bacteria, hence reducing HAIs. Silver nanoparticles have been shown to have broad spectrum antibacterial properties, and therefore they have been incorporated into fabrics to provide antibacterial functionality. Liquid flame spray (LFS) nanoparticle synthesis allows nanoparticles to be produced and deposited on surfaces at speeds up to and beyond 300 m/min. Herein, LFS is used to deposit silver nanoparticles onto two fabrics that are commonly used in the hospital environment with the aim of producing antibacterial fabrics. A thin plasma coating on top of the fabrics after silver deposition is used to improve nanoparticle adhesion. Fabrics coated with silver nanoparticles demonstrated antibacterial properties against Escherichia coli. Nanoparticle imaging and surface chemical characterization are performed using scanning electron microscopy and X-ray photoelectron spectroscopy. The highlights of this research are as follows: • high-speed synthesis and deposition of silver nanoparticles on fabrics; • plasma coating onto fabrics with silver nanoparticles; • antibacterial fabrics for potential use in healthcare environments.
  •  
6.
  •  
7.
  • Forsberg, Viviane, 1981-, et al. (författare)
  • Printability of functional inkjet inks onto commercial inkjet substrates and a taylor made pigmented coated paper
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Printed electronics are of increasing interest. The substrates used have primarily been plastics although the interest for cellulose-based substrates is increasing due to the environmental aspect as well as cost. The requirements of substrates for electronically active inks differs from graphical inks and therefore we have investigated a custom-made pigment based coated paper and compared it to commercial photo-papers and a coated PE film.Our goal with the study of different substrates was to select the most suitable substrate to print water based 2D materials inkjet inks for flexible electronics.The discovery of graphene, a layered material achieved from the exfoliation of graphite, has resulted in the study of other materials with similar properties to cover areas where graphene could not be used due to the absence of a bandgap in the material. For example in thin film transistors (TFT) a semiconductor layer is essential to enable turn on and off the device. This semiconductor layer can be achieved using various materials but particular interest have been dedicated to abundant and cheap 2D materials such as the transition metal dichalcogenide (TMD) molybdenum disulfide (MoS2). To date, most of the dispersions based on TMDs use organic solvents or water solutions of surfactants. Previously we focus on the study of environmental friendly inks produced by liquid phase exfoliation (LPE) of MoS2 in water using cellulose stabilizers such as ethyl cellulose (EC), cellulose nanofibrils (CNF) and nanofibrilcellulose (NFC). We have study various aspects of the ink fabrication includi  ng pH range, the source of MoS2, nanosheets thickness, particle size distribution,  ink stabilizers, ink concentration, viscosity and surface tension. These inks have very low concentration requiring a number of printing passes to cover the substrate. Therefore the substrate selection is crucial as a large amount of solvent is to be absorb by the substrate. Our goal was to use such an ink to print electrodes of MoS2 into a paper substrate after substrate selection.Commercial photo papers, a commercial coated PE film and a tailor made multilayer pigment coated paper substrate were used for the substrate selection analysis.  We print the substrates using a DIMATIX inkjet printer with a 10 pL printing head using the distillated water waveform supplied by the printer manufacturer. The voltage used was 23V and 4 nozzles were used for the print outs. The inkjet ink used was the organic PEDOT:PSS. We printed lines ranging from 1 pixel to 20 pixels with 1, 2 and 3 printing passes. The printing quality was evaluated through measurements of the waviness of the printed lines measured after imaging the printed samples with a SEM microscope. The line width measurement was done using the software from the SEM.We also evaluated the structure of the coatings using SEM and topography measurements. The ink penetration through the substrates was evaluated using Raman Spectroscopy. For the pigmented coated sample we measured 4% of ink penetration through the substrate for the 1pxl printed line printed once onto the paper.  Cross-section SEM images of the printed lines were made to visualize the ink penetration into the substrate.Regarding the electrical conductivity of the printed samples, the differences in resistivity varying the width of the printed lines and the number of printed passes were evaluated. The resistivity of the printed electrodes was evaluated using the 2-points probe method. Before the resistivity measurements, the printed substrates were heated at 50°C and 100°C for 30 minutes in an oven.We choose the PEDOT:PSS ink because it is a low price ink compared to metal nanoparticles inks for printed electronics. The print outs had low resistivity at a few printing passes with no need for sintering at high temperatures. The MoS2 ink has a very high resistance at a few printing passes due to lower coverage of the substrate therefore for this ink these measurements were not possible to be made. The main pigment composition of the paper coatings of the substrates was evaluated using FT-IR and EDX, these data plus the coating structure evaluated by SEM was related to the print quality.The best in test papers were used to print MoS2 electrodes. After the printing tests, another step for the optimization of the MoS2 ink properties shall be carried out in future studies for better print quality. We also evaluated the surface energy of the substrates through contact angle measurements to match the surface tension of the PEDOT:PSS ink and later the MoS2 ink. Although the pigmented coated printing substrate did not show better results than the commercial photo papers and PE foil in terms of line quality, it shows the lowest resistivity and sufficient results for low cost recyclable electronics, which do not require high conductivity. Nevertheless, the substrate was very thin and it could even be used in magazines as traditional lightweight coated papers (LWC) are used but with the additional of a printed electronic feature.
  •  
8.
  • Haapanen, Janne, et al. (författare)
  • Binary TiO2/SiO2 nanoparticle coating for controlling the wetting properties of paperboard
  • 2015
  • Ingår i: Materials Chemistry and Physics. - : Elsevier BV. - 0254-0584 .- 1879-3312. ; 149, s. 230-237
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce a flame based aerosol method to fabricate thin films consisting of binary TiO2/SiO2 nanoparticles deposited directly from the flame onto the paperboard. Nanocoatings were prepared with Liquid Flame Spray (LFS) in a roll-to-roll process with the line speed of 50 m/min. Surface wetting behavior of nanocoated paperboard was studied for different Ti/Si ratios in the precursor, affecting TiO2/SiO2 ratio in the coating. Wettability could be adjusted to practically any water contact angle between 10 and 160° by setting the Ti/Si ratio in the liquid precursor. Structure of the two component nanocoating was analysed with FE-SEM, TEM, EDS, XPS and XRD. The porous thin film coating was concluded to consist of ca. 10 nm sized mixed oxide nanoparticles with segregated TiO2 and SiO2 phases. Accumulation of carbonaceous compounds on the surface was seen to be almost linearly dependent on the Ti/Si ratio, indicating of each species being exposed in corresponding amount. However, wetting of the surface was observed to follow merely an S-shaped curve, caused by the roughness of the nanocoated surface. Reasons for the observed superhydrophobicity and superhydrophilicity of these binary nanocoatings on paperboard are discussed.
  •  
9.
  • Haapanen, Janne, et al. (författare)
  • On the limit of superhydrophobicity : Defining the minimum amount of TiO2 nanoparticle coating
  • 2019
  • Ingår i: Materials Research Express. - : IOP Publishing. - 2053-1591. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Fabrication of superhydrophobic surfaces in large scale has been in high interest for several years, also titanium oxide nanostructures having been applied for the purpose. Optimizing the amount and structure of the TiO2 material in the coating will play a key role when considering upscaling. Here, we take a look at fabricating the superhydrophobic surface in a one-step roll-to-roll pilot scale process by depositing TiO2 nanoparticles from a Liquid Flame Spray onto a moving paperboard substrate. In order to find the minimum amount of nanomaterial still sufficient for creating superhydrophobicity, we varied nanoparticle production rate, flame distance from the substrate and line speed. Since the deposited amount of material sideways from the flame path was seen to decrease gradually, spatial analysis enabled us to consistently determine the minimum amount of TiO2 nanoparticles on the substrate needed to achieve superhydrophobicity. Amount as low as 20-30 mg m-2 of TiO2 nanoparticles was observed to be sufficient. The scanning electron microscopy revealed that at this amount, the surface was covered with nanoparticles only partially, but still sufficiently to create a hierarchical structure to affect wetting significantly. Based on XPS analysis, it became apparent that TiO2 gathers hydrocarbons on the surface to develop the surface chemistry towards hydrophobic, but below the critical amount of TiO2 nanoparticles, the chemistry could not enable superhydrophobicity anymore. While varying the deposited amount of TiO2, besides the local spatial variance of the coating amount, also the overall yield was studied. Within the text matrix, a yield up to 44% was achieved. In conclusion, superhydrophobicity was achieved at all tested line speeds (50 to 300 m min-1), even if the amount of TiO2 varied significantly (20 to 230 mg m-2). 
  •  
10.
  • Honorato, Camila, et al. (författare)
  • Transparent nanocellulose-pigment composite films
  • 2015
  • Ingår i: Journal of Materials Science. - : Springer Science and Business Media LLC. - 0022-2461 .- 1573-4803. ; 50:22, s. 7343-7352
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodegradable coatings and films of cellulose nanofibers (CNFs) or a combination of CNFs and inorganic fillers, such as clay or calcium carbonate (CaCO3), can provide a replacement for non-biodegradable plastic coatings as barrier layers in packaging boards. In this work, transparent composite films were prepared from CNFs of Pinus radiata and Eucalyptus using different amounts of clay and CaCO3 as fillers. The impact of raw material (softwood vs. hardwood), TEMPO oxidation levels and filler type (clay vs. CaCO3) on film properties was studied. Pinus radiata CNF films had superior mechanical properties to Eucalyptus CNF films, but no significant differences were observed in the barrier and optical properties. Clay seemed to work better as filler compared to CaCO3, in terms of its impact on film properties. Composite films with CaCO3 as filler were highly brittle with inferior properties to clay-CNF films, and an uneven distribution and agglomeration of the CaCO3 mineral particles was evident in SEM images. Based on the results, clay as filler in CNF coatings is preferred for targeting packaging board applications. Rheological characterisation of the CNF suspensions revealed shear-thinning behaviour, with the CNF from Eucalyptus having higher viscosities and lower power-law indices when compared to the CNF from P. radiata.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 48
Typ av publikation
tidskriftsartikel (30)
konferensbidrag (14)
rapport (2)
doktorsavhandling (2)
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Toivakka, Martti (45)
Sand, Anders (18)
Haapanen, Janne (10)
Tuominen, Mikko (10)
Kuusipalo, Jurkka (9)
Teisala, Hannu (8)
visa fler...
Stepien, Milena (8)
Saarinen, Jarkko J. (8)
Aromaa, Mikko (7)
Chinga-Carrasco, Gar ... (6)
Dahlström, Christina ... (5)
Kumar, Vinay (5)
Abitbol, Tiffany (4)
Pålsson, Bertil (3)
Engström, Ann-Christ ... (3)
Carlson, Johan (3)
Syverud, Kristin (2)
Xu, Chunlin (2)
Olin, Håkan, 1957- (2)
Blomquist, Nicklas, ... (2)
Bollström, Roger (2)
Österbacka, Ronald (2)
Forsberg, Sven, 1956 ... (2)
Kumar, V (1)
Rosenkranz, Jan (1)
Deppert, Knut (1)
Swerin, Agne (1)
Aulin, Christian (1)
Pettersson, Fredrik (1)
Andersson, Henrik, D ... (1)
Liu, Jun (1)
Dahlström, Christina (1)
Forsberg, Sven (1)
Hummelgård, Magnus, ... (1)
NURMI, M (1)
Mašlík, Jan (1)
Andres, Britta, 1986 ... (1)
Norgren, Magnus, 196 ... (1)
Suhonen, Heikki (1)
Arffman, Anssi (1)
Keskinen, Jorma (1)
Honkanen, Mari (1)
Nikkanen, Juha-Pekka (1)
Levanen, Erkki (1)
Messing, Maria (1)
Makela, Jyrki M. (1)
Sandström, Andreas (1)
Edman, Ludvig (1)
Asadpoordarvish, Ami ... (1)
Larsen, Christian (1)
visa färre...
Lärosäte
RISE (19)
Luleå tekniska universitet (18)
Mittuniversitetet (6)
Kungliga Tekniska Högskolan (3)
Karlstads universitet (2)
Umeå universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (47)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Teknik (22)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy