SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Turnock Stephen) "

Sökning: WFRF:(Turnock Stephen)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marimon Giovannetti, Laura, et al. (författare)
  • Developing fluid structure interaction experimental methodologies For dynamic foil measurements
  • 2020
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The ability to validate computational predictions of either passive adaptive or dynamic response of deformable foils is essential when seeking to optimise high performance yachts. This requires time-accurate and synchronised measurements of the flow field and the shape of the deformable foil. It is important to understand the accuracy with which the onset of dynamic effects such as flutter or stall can influence the structural design and planform. Examples of such design challenges are present in the design of hydrofoils, wing sails and other propulsion systems such as composite propellers. The current research aims to demonstrate the capability of an experimental methodology that can be used as a validation for numerical investigations of dynamic fluid-structure interaction problems. The presented methodology provides high-speed full-field experimental data of: the structural deformations, by means of Digital Image Correlation (DIC), the tip vortex flow field, by means of Particle Image Velocimetry (PIV) and the forces and moments acting on a flexible aerofoil. A comparison between static and dynamic lift coefficients is presented for unsteady dataset and the effect of dynamic loads are analysed both at structural deformation and flow features level. Overall it is found that it is possible to capture synchronised structural deformation and flow field data at reasonable data rates that allow validation assessment of unsteady CFD.
  •  
2.
  • von Salzen, Knut, et al. (författare)
  • Clean air policies are key for successfully mitigating Arctic warming
  • 2022
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reductions. Fossil fuel use is projected to rapidly decline in an increasingly sustainable world, resulting in far-reaching air quality benefits. Despite human health benefits, reductions in sulfur emissions in a more sustainable world could enhance Arctic warming by 0.8 °C in 2050 relative to the 1995–2014, thereby offsetting climate benefits of greenhouse gas reductions. Targeted and technically feasible emissions reduction opportunities exist for achieving simultaneous climate and human health co-benefits. It would be particularly beneficial to unlock a newly identified mitigation potential for carbon particulate matter, yielding Arctic climate benefits equivalent to those from carbon dioxide reductions by 2050.
  •  
3.
  • Andersson, Jennie, 1986, et al. (författare)
  • Ship-scale CFD benchmark study of a pre-swirl duct on KVLCC2
  • 2022
  • Ingår i: Applied Ocean Research. - : Elsevier Ltd. - 0141-1187 .- 1879-1549. ; 123
  • Tidskriftsartikel (refereegranskat)abstract
    • Installing an energy saving device such as a pre-swirl duct (PSD) is a major investment for a ship owner and prior to an order a reliable prediction of the energy savings is required. Currently there is no standard for how such a prediction is to be carried out, possible alternatives are both model-scale tests in towing tanks with associated scaling procedures, as well as methods based on computational fluid dynamics (CFD). This paper summarizes a CFD benchmark study comparing industrial state-of-the-art ship-scale CFD predictions of the power reduction through installation of a PSD, where the objective was to both obtain an indication on the reliability in this kind of prediction and to gain insight into how the computational procedure affects the results. It is a blind study, the KVLCC2, which the PSD is mounted on, has never been built and hence there is no ship-scale data available. The 10 participants conducted in total 22 different predictions of the power reduction with respect to a baseline case without PSD. The predicted power reductions are both positive and negative, on average 0.4%, with a standard deviation of 1.6%-units, when not considering two predictions based on model-scale CFD and two outliers associated with large uncertainties in the results. Among the variations present in computational procedure, two were found to significantly influence the predictions. First, a geometrically resolved propeller model applying sliding mesh interfaces is in average predicting a higher power reduction with the PSD compared to simplified propeller models. The second factor with notable influence on the power reduction prediction is the wake field prediction, which, besides numerical configuration, is affected by how hull roughness is considered. © 2022 The Authors
  •  
4.
  • Flood, Victoria A., et al. (författare)
  • Evaluating modelled tropospheric columns of CH4, CO, and O3 in the Arctic using ground-based Fourier transform infrared (FTIR) measurements
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24:2, s. 1079-1118
  • Tidskriftsartikel (refereegranskat)abstract
    • This study evaluates tropospheric columns of methane, carbon monoxide, and ozone in the Arctic simulated by 11 models. The Arctic is warming at nearly 4 times the global average rate, and with changing emissions in and near the region, it is important to understand Arctic atmospheric composition and how it is changing. Both measurements and modelling of air pollution in the Arctic are difficult, making model validation with local measurements valuable. Evaluations are performed using data from five high-latitude ground-based Fourier transform infrared (FTIR) spectrometers in the Network for the Detection of Atmospheric Composition Change (NDACC). The models were selected as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) report on short-lived climate forcers. This work augments the model-measurement comparisons presented in that report by including a new data source: column-integrated FTIR measurements, whose spatial and temporal footprint is more representative of the free troposphere than in situ and satellite measurements. Mixing ratios of trace gases are modelled at 3-hourly intervals by CESM, CMAM, DEHM, EMEP MSC-W, GEM-MACH, GEOS-Chem, MATCH, MATCH-SALSA, MRI-ESM2, UKESM1, and WRF-Chem for the years 2008, 2009, 2014, and 2015. The comparisons focus on the troposphere (0-7km partial columns) at Eureka, Canada; Thule, Greenland; Ny Ålesund, Norway; Kiruna, Sweden; and Harestua, Norway. Overall, the models are biased low in the tropospheric column, on average by -9.7% for CH4, -21% for CO, and -18% for O3. Results for CH4 are relatively consistent across the 4 years, whereas CO has a maximum negative bias in the spring and minimum in the summer and O3 has a maximum difference centered around the summer. The average differences for the models are within the FTIR uncertainties for approximately 15% of the model-location comparisons.
  •  
5.
  • Wood, Robert J. K., et al. (författare)
  • Tribological design constraints of marine renewable energy systems
  • 2010
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962.
  • Tidskriftsartikel (refereegranskat)abstract
    • Against the backdrop of increasing energy demands, the threat of climate change and dwindling fuel reserves, finding reliable, diverse, sustainable/renewable, affordable energy resources has become a priority for many countries. Marine energy conversion systems are at the forefront of providing such a resource. Most marine renewable energy conversion systems require tribological components to covert wind or tidal streams to rotational motion for generating electricity while wave machines typically use oscillating hinge or piston within cylinder geometries to promote reciprocating linear motion. This paper looks at the tribology of three green marine energy systems, offshore wind, tidal and wave machines. Areas covered include lubrication and contamination, bearing and gearbox issues, biofouling, cavitation erosion, tribocorrosion, condition monitoring as well as design trends and loading conditions associated with tribological components. Current research thrusts are highlighted along with areas needing research as well as addressing present day issues related to the tribology of offshore energy conversion technologies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy