SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vainio H) "

Sökning: WFRF:(Vainio H)

  • Resultat 1-10 av 58
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tabassum, R, et al. (författare)
  • Genetic architecture of human plasma lipidome and its link to cardiovascular disease
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4329-
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD.
  •  
2.
  • Vaivads, Andris, et al. (författare)
  • Turbulence Heating ObserveR - satellite mission proposal
  • 2016
  • Ingår i: JOURNAL OF PLASMA PHYSICS. - 0022-3778. ; 82
  • Tidskriftsartikel (refereegranskat)abstract
    • The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth's magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space - magnetosheath, shock, foreshock and pristine solar wind - featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the 'Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)'. THOR has been selected by European Space Agency (ESA) for the study phase.
  •  
3.
  •  
4.
  •  
5.
  • Hietala, H., et al. (författare)
  • Supermagnetosonic Jets behind a Collisionless Quasiparallel Shock
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 103:24, s. 245001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The downstream region of a collisionless quasiparallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multispacecraft measurements of this type of supermagnetosonic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasiparallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasiparallel shocks in many plasma environments.
  •  
6.
  • Milillo, A., et al. (författare)
  • Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Forskningsöversikt (refereegranskat)abstract
    • The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  •  
7.
  • Pearce, Neil E, et al. (författare)
  • IARC Monographs : 40 Years of Evaluating Carcinogenic Hazards to Humans
  • 2015
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 123:6, s. 507-514
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Recently the International Agency for Research on Cancer (IARC) Programme for the Evaluation of Carcinogenic Risks to Humans has been criticized for several of its evaluations, and also the approach used to perform these evaluations. Some critics have claimed that IARC Working Groups' failures to recognize study weaknesses and biases of Working Group members have led to inappropriate classification of a number of agents as carcinogenic to humans.OBJECTIVES: The authors of this paper are scientists from various disciplines relevant to the identification and hazard evaluation of human carcinogens. We have examined here criticisms of the IARC classification process to determine the validity of these concerns. We review the history of IARC evaluations and describe how the IARC evaluations are performed.DISCUSSION: We conclude that these recent criticisms are unconvincing. The procedures employed by IARC to assemble Working Groups of scientists from the various discipline and the techniques followed to review the literature and perform hazard assessment of various agents provide a balanced evaluation and an appropriate indication of the weight of the evidence. Some disagreement by individual scientists to some evaluations is not evidence of process failure. The review process has been modified over time and will undoubtedly be altered in the future to improve the process. Any process can in theory be improved, and we would support continued review and improvement of the IARC processes. This does not mean, however, that the current procedures are flawed.CONCLUSIONS: The IARC Monographs have made, and continue to make, major contributions to the scientific underpinning for societal actions to improve the public's health.
  •  
8.
  •  
9.
  • Kollhoff, A., et al. (författare)
  • The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (≲1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to characterize the particle propagation in the interplanetary medium.Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230° in longitude close to 1 AU. The particle onset delays observed at the different spacecraft are larger as the flare–footpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that diffusive propagation processes are likely involved.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 58

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy