SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Valtchanov I.) "

Sökning: WFRF:(Valtchanov I.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Panuzzo, P., et al. (författare)
  • Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gravitational waves from black-hole (BH) merging events have revealed a population of extra-galactic BHs residing in short-period binaries with masses that are higher than expected based on most stellar evolution models-And also higher than known stellar-origin black holes in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars.Aims. Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation mechanisms and progenitors.Methods. As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function orbital solutions.Results. The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70a ±a 0.82aM- BH in a binary system with a period of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc.Conclusions. The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way.
  •  
2.
  • Griffin, M. J., et al. (författare)
  • The Herschel-SPIRE instrument and its in-flight performance
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
  •  
3.
  • Pierre, M., et al. (författare)
  • The XXL survey : First results and future
  • 2017
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : Wiley-VCH Verlagsgesellschaft. - 0004-6337 .- 1521-3994. ; 338:2-3, s. 334-341
  • Tidskriftsartikel (refereegranskat)abstract
    • The XXL survey currently covers two 25 deg(2) patches with XMM observations of similar to 10 ks. We summarize the scientific results associated with the first release of the XXL dataset, which occurred in mid-2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z < 2) cluster, (z < 4) active galactic nuclei (AGN), and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-lambda observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters, and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z > 1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
  •  
4.
  • Pierre, M., et al. (författare)
  • The XXL Survey I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalised. Aims. We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg(2) each at a point-source sensitivity of similar to 5 x 10(-15) erg s(-1) cm(-2) in the [0.5-2] keV band (completeness limit). The survey's main goals are to provide constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programmes. Methods. We describe the 542 XMM observations along with the associated multi-lambda and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results. The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-lambda associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions. The XXL multi-lambda data set will have a unique lasting legacy value for cosmological and extragalactic studies and will serve as a calibration resource for future dark energy studies with clusters and other X-ray selected sources. With the present article, we release the XMM XXL photon and smoothed images along with the corresponding exposure maps.
  •  
5.
  • Rex, M., et al. (författare)
  • The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L13
  • Tidskriftsartikel (refereegranskat)abstract
    • The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 mu m bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 mu m and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 mu m-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales.
  •  
6.
  • Adami, C., et al. (författare)
  • The XXL Survey: XX. The 365 cluster catalogue
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the currently debated context of using clusters of galaxies as cosmological probes, the need for well-defined cluster samples is critical. Aims. The XXL Survey has been specifically designed to provide a well characterised sample of some 500 X-ray detected clusters suitable for cosmological studies. The main goal of present article is to make public and describe the properties of the cluster catalogue in its present state, as well as of associated catalogues of more specific objects such as super-clusters and fossil groups. Methods. Following from the publication of the hundred brightest XXL clusters, we now release a sample containing 365 clusters in total, down to a flux of a few 10-15 erg s-1 cm-2 in the [0.5-2] keV band and in a 1′ aperture. This release contains the complete subset of clusters for which the selection function is well determined plus all X-ray clusters which are, to date, spectroscopically confirmed. In this paper, we give the details of the follow-up observations and explain the procedure adopted to validate the cluster spectroscopic redshifts. Considering the whole XXL cluster sample, we have provided two types of selection, both complete in a particular sense: one based on flux-morphology criteria, and an alternative based on the [0.5-2] keV flux within 1 arcmin of the cluster centre. We have also provided X-ray temperature measurements for 80% of the clusters having a flux larger than 9 × 10-15 erg s-1 cm-2. Results. Our cluster sample extends from z ∼ 0 to z ∼ 1.2, with one cluster at z ∼ 2. Clusters were identified through a mean number of six spectroscopically confirmed cluster members. The largest number of confirmed spectroscopic members in a cluster is 41. Our updated luminosity function and luminosity-temperature relation are compatible with our previous determinations based on the 100 brightest clusters, but show smaller uncertainties. We also present an enlarged list of super-clusters and a sample of 18 possible fossil groups. Conclusions. This intermediate publication is the last before the final release of the complete XXL cluster catalogue when the ongoing C2 cluster spectroscopic follow-up is complete. It provides a unique inventory of medium-mass clusters over a 50 deg2 area out to z ∼ 1.
  •  
7.
  • Boone, F., et al. (författare)
  • An extended Herschel drop-out source in the center of AS1063: A normal dusty galaxy at z = 6.1 or SZ substructures?
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 559, s. L1-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the course of our 870 μm APEX/LABOCA follow-up of the Herschel Lensing Survey we have detected a source in AS1063 (RXC J2248.7-4431) that has no counterparts in any of the Herschel PACS/SPIRE bands, it is a Herschel "drop-out" with S870=S500 ≥ 0:5. The 870 μm emission is extended and centered on the brightest cluster galaxy, suggesting either a multiply imaged background source or substructure in the Sunyaev-Zel'dovich increment due to inhomogeneities in the hot cluster gas of this merging cluster. We discuss both interpretations with emphasis on the putative lensed source. Based on the observed properties and on our lens model we find that this source may be the first submillimeter galaxy (SMG) with a moderate far-infrared (FIR) luminosity (LFIR. © ESO 2013.
  •  
8.
  • Guglielmo, V., et al. (författare)
  • The XXL Survey: XXII. the XXL-North spectrophotometric sample and galaxy stellar mass function in X-ray detected groups and clusters
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The fraction of galaxies bound in groups in the nearby Universe is high (50% at z ∼ 0). Systematic studies of galaxy properties in groups are important in order to improve our understanding of the evolution of galaxies and of the physical phenomena occurring within this environment. Aims. We have built a complete spectrophotometric sample of galaxies within X-ray detected, optically spectroscopically confirmed groups and clusters (G&C), covering a wide range of halo masses at z ≤ 0.6. Methods. In the context of the XXL survey, we analyse a sample of 164 G&C in the XXL-North region (XXL-N), at z ≤ 0.6, with a wide range of virial masses (1.24 × 1013 ≤ M500,scal(Mo) ≤ 6.63 × 1014) and X-ray luminosities ((2.27 × 1041 ≤ L500,scalXXL(erg-s-1) ≤ 2.15 × 1044)). The G&C are X-ray selected and spectroscopically confirmed. We describe the membership assignment and the spectroscopic completeness analysis, and compute stellar masses. As a first scientific exploitation of the sample, we study the dependence of the galaxy stellar mass function (GSMF) on global environment. Results. We present a spectrophotometric characterisation of the G&C and their galaxies. The final sample contains 132 G&C, 22 111 field galaxies and 2225 G&C galaxies with r-band magnitude <20. Of the G&C, 95% have at least three spectroscopic members, and 70% at least ten. The shape of the GSMF seems not to depend on environment (field versus G&C) or X-ray luminosity (used as a proxy for the virial mass of the system). These results are confirmed by the study of the correlation between mean stellar mass of G&C members and L500,scalXXL. We release the spectrophotometric catalogue of galaxies with all the quantities computed in this work. Conclusions. As a first homogeneous census of galaxies within X-ray spectroscopically confirmed G&C at these redshifts, this sample will allow environmental studies of the evolution of galaxy properties.
  •  
9.
  • Pacaud, F., et al. (författare)
  • The XXL Survey II. The bright cluster sample: catalogue and luminosity function
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Forskningsöversikt (refereegranskat)abstract
    • Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. The survey will ultimately uncover several hundreds of galaxy clusters out to a redshift of similar to 2 at a sensitivity of similar to 10 (14) erg s (1) cm (2) in the [0.5-2] keV band. Aims. This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3 x 10(-1)4 erg s(-1) cm(-2) on the source flux within a 1' aperture. Methods. The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. Results. The bright cluster sample consists of systems with masses between M-500 = 7 x 10(13) and 3 x 10(14) M-circle dot, mostly located between z = 0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of sigma(8) and/or Omega(M) appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z similar to 1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. ELL GO, 1989, ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, V70, P1
  •  
10.
  • Koulouridis, E., et al. (författare)
  • The XXL Survey: XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592, s. Art. no. A11-
  • Forskningsöversikt (refereegranskat)abstract
    • Context. This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 deg2 fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2 m William Herschel Telescope. Aims. The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. Methods. To determine the redshift of galaxy clusters and AGN, we assign high priority to a) the brightest cluster galaxies (BCGs), b) the most probable cluster galaxy candidates, and c) the optical counterparts of X-ray point-like sources. We use the outcome of the observations to study the projected (2D) and the spatial (3D) overdensity of AGN in three superclusters. Results. We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z ~ 0.43, and we confirmed the redshift of supercluster XLSSC-d at z ~ 0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z ~ 0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. All of the AGN found have luminosities below 7 × 1042 erg s-1. Conclusions. The difference in the AGN frequency between the three superclusters cannot be explained by the present study because of small number statistics. Further analysis of a larger number of superclusters within the 50 deg2 of the XXL is needed before any conclusions on the effect of the supercluster environment on AGN can be reached.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy