SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wickman Jonas 1985 ) "

Sökning: WFRF:(Wickman Jonas 1985 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Uszko, Wojciech, 1985-, et al. (författare)
  • Fitting functional response surfaces to data : a best practice guide
  • 2020
  • Ingår i: Ecosphere. - : Wiley-Blackwell. - 2150-8925 .- 2150-8925. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Describing how resource consumption rates depend on resource density, conventionally termed "functional responses," is crucial to understanding the population dynamics of trophically interacting organisms. Yet, accurately determining the functional response for any given pair of predator and prey remains a challenge. Moreover, functional responses are potentially complex surfaces in multidimensional space, where resource density is only one of several factors determining consumption rates. We explored how three sources of error can be addressed in the design and statistical analysis of functional response experiments: ill-chosen spacing of prey densities, heteroscedastic variance in consumption rates, and non-independence of parameters of the function describing prey consumption in relation to prey density and additional environmental factors. We generated extensive, virtual data sets that simulated feeding experiments in which both prey density and environmental temperature were varied, and for which the true, deterministic functional response surface was known and realistic variance had been added. We compared eight different methods of functional response fitting, one of which stood out as best performing. We subsequently tested several conclusions from the simulation study against experimental data of zooplankton feeding on algae across a broad range of temperatures. We summarize our main findings in three best practice guidelines for the experimental estimation of functional response surfaces, of which the second is the most important: (1) space prey densities logarithmically, starting from very low densities; (2) log-transform prey consumption data prior to fitting; and (3) fit a multivariate functional response surface to all data (including all prey densities and other factors, in our case temperature) in a single step. We also observed that functional response surfaces were fitted more accurately and precisely than their component parameters. The latter occurred because parameter estimates were non-independent, which is an inevitable feature of fitting complex nonlinear functions to data: A given response surface can often be described with near-equal accuracy by multiple parameter combinations. We therefore conclude that fitted functional response models perform better at optimizing the fit of the overall response surface than at determining how component parameters, such as the attack rate or handling time, depend on environmental factors such as temperature.
  •  
2.
  • Helmer, Pernilla, et al. (författare)
  • Investigation of 2D Boridene from First Principles and Experiments
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a 2D metal boride - boridene - has been experimentally realized in the form of single-layer molybdenum boride sheets with ordered metal vacancies, through selective etching of the nanolaminated 3D parent borides (Mo2/3Y1/3)(2)AlB2 and (Mo2/3Sc1/3)(2)AlB2. The chemical formula of the boridene was suggested to be Mo4/3B2-xTz, where T-z denotes surface terminations. Here, the termination composition and material properties of Mo4/3B2-xTz from both theoretical and experimental perspectives are investigated. Termination sites are considered theoretically for termination species T = O, OH, and F, and the energetically favored termination configuration is identified at z = 2 for both single species terminations and binary termination mixes of different stoichiometries in ordered and disordered configurations. Mo4/3B2-xTz is shown to be dynamically stable for multiple termination stoichiometries, displaying semiconducting, semimetallic, or metallic behavior depending on how different terminations are combined. The approximate chemical formula of a freestanding film of boridene is attained as Mo1.33B1.9O0.3(OH)(1.5)F-0.7 from X-ray photoelectron spectroscopy (XPS) analysis which, within error margins, is consistent with the theoretical results. Finally, metallic and additive-free Mo4/3B2-xTz shows high catalytic performance for the hydrogen evolution reaction, with an onset potential of 0.15 V versus the reversible hydrogen electrode.
  •  
3.
  • Wickman, Jonas, 1985- (författare)
  • Evolution of Ecological Communities in Spatially Heterogeneous Environments
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Evolutionarily stable communities are the endpoints of evolution, and ecological communities whose traits are under selection will eventually settle into them. Hence, the properties of such communities are of particular interest, as they can persist over long evolutionary time scales. The notion of an evolutionarily stable strategy - an evolved strategy that cannot be beat by any other once established - has now been part of theoretical ecology for almost 50 years, and the theory for evolutionarily stable strategies and communities, and how they are reached has become increasingly versatile. However, for environments where conditions vary in space, so-called heterogeneous environments, efficient analytical and numerical tools for studying evolutionarily stable communities and how they come about have been lacking. Hence, many questions regarding how evolutionarily stable diversity is generated and maintained when ecological and evolutionary forces vary in space remain unexplored. In particular, how spatially averaged selection and selective forces derived from spatial variability can act together to either promote or inhibit evolutionarily stable diversity is not well understood.  In this thesis, I use a two-pronged approach towards answering such questions by developing the necessary analytical and numerical tools for assembling and analyzing evolutionarily stable communities in heterogeneous environments, and by then employing these tools to study communities of resource competitors and food webs. Specifically, I derive expressions for directional and stabilizing/disruptive selection when the spatially heterogeneous ecological dynamics of a community are described by reaction-diffusion equations. These expressions allow us to understand selection across an environment in terms of local selection pressures, and also enable efficient numerical implementations of evolutionary community assembly procedures that lead to evolutionarily stable communities.  Applied to the communities of resource competitors and food webs I find that the selective forces derived from spatially averaged selection and those derived from spatial variability can act both in concert or in opposition. If these forces act in opposition and if the spatial variability of local selection is high, a high diversity of organisms can form even when spatially averaged selection is stabilizing. In contrast, if spatially averaged selection is disruptive, it can prevent more diverse communities from forming by creating few globally unbeatable strategies. However, these forces can also act disruptively in concert to create more diverse communities. Together, these results demonstrate a surprising variety of qualitatively different outcomes when evolutionarily stable communities are assembled in heterogeneous environments.
  •  
4.
  • Wickman, Jonas, 1985-, et al. (författare)
  • Evolution of resource specialisation in competitive metacommunities
  • 2019
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 22:11, s. 1746-1756
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial environmental heterogeneity coupled with dispersal can promote ecological persistence of diverse metacommunities. Does this premise hold when metacommunities evolve? Using a two-resource competition model, we studied the evolution of resource-uptake specialisation as a function of resource type (substitutable to essential) and shape of the trade-off between resource uptake affinities (generalist- to specialist-favouring). In spatially homogeneous environments, evolutionarily stable coexistence of consumers is only possible for sufficiently substitutable resources and specialist-favouring trade-offs. Remarkably, these same conditions yield comparatively low diversity in heterogeneous environments, because they promote sympatric evolution of two opposite resource specialists that, together, monopolise the two resources everywhere. Consumer diversity is instead maximised for intermediate trade-offs and clearly substitutable or clearly essential resources, where evolved metacommunities are characterised by contrasting selection regimes. Taken together, our results present new insights into resource-competition-mediated evolutionarily stable diversity in homogeneous and heterogeneous environments, which should be applicable to a wide range of systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy