SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wiekhorst F.) "

Sökning: WFRF:(Wiekhorst F.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bender, P., et al. (författare)
  • Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles
  • 2018
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 29:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Clustering of magnetic nanoparticles can drastically change their collective magnetic properties, which in turn may influence their performance in technological or biomedical applications. Here, we investigate a commercial colloidal dispersion (FeraSpin™R), which contains dense clusters of iron oxide cores (mean size around 9 nm according to neutron diffraction) with varying cluster size (about 18-56 nm according to small angle x-ray diffraction), and its individual size fractions (FeraSpin™XS, S, M, L, XL, XXL). The magnetic properties of the colloids were characterized by isothermal magnetization, as well as frequency-dependent optomagnetic and AC susceptibility measurements. From these measurements we derive the underlying moment and relaxation frequency distributions, respectively. Analysis of the distributions shows that the clustering of the initially superparamagnetic cores leads to remanent magnetic moments within the large clusters. At frequencies below 105 rad s-1, the relaxation of the clusters is dominated by Brownian (rotation) relaxation. At higher frequencies, where Brownian relaxation is inhibited due to viscous friction, the clusters still show an appreciable magnetic relaxation due to internal moment relaxation within the clusters. As a result of the internal moment relaxation, the colloids with the large clusters (FS-L, XL, XXL) excel in magnetic hyperthermia experiments.
  •  
2.
  • Eberbeck, D., et al. (författare)
  • Magneto-structural characterization of different kinds of magnetic nanoparticles
  • 2023
  • Ingår i: Journal of Magnetism and Magnetic Materials. - 0304-8853. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Using well-established measurement techniques like transmission electron microscopy (TEM), dynamic light scattering (DLS), small and wide angle X-ray scattering (SAXS, WAXS), susceptometry, and magnetorelaxometry, the distribution of the physical and magnetic size (magnetic moments) and magnetic anisotropy of a variety of structurally different magnetic nanoparticle samples (MNPs) is analyzed and compared. A term which accounts for the presence of weak magnetic areas (WMAs) within the MNPs was introduced to the widespread analysis model for M(H) data, enabling a consistent interpretation of the data in most of the systems. A comparison of the size distributions as obtained for the physical and the magnetic diameter suggests a multidomain structure for three single core systems under investigation, in all probability evoked by the presence of a wustite phase, as identified by WAXS. Analyzing the relationship d < dm < dc between the average single core diameter d, the effective magnetic (domain) size dm and the cluster diameter dc quantitatively, two qualitatively different magnetic structures in multicore MNP (MCMNP) systems were identified: (i) The magnetic moments of single cores within the MCMNP of fluidMAG tend to build flux closure structures, driven by dipole–dipole interaction. (ii) The magnetic behavior of Resovist® was attributed to the presence of domain sizes of about 12 nm within MCMNP, exceeding the single core diameters of 5 nm. Thereby, WAXS revealed a bimodal crystallite size distribution suggesting a crystallite merging process within the MCMNP. The value of the effective magnetic moment of these MCMNP could be explained within the presented “random moment cluster model” (RMCM). We conclude that the combination of physical and magnetic structure parameters obtained from complementary measurement methods allows a reliable assessment of the magnetic structure of single and multicore MNPs.
  •  
3.
  • Schier, P., et al. (författare)
  • European Research on Magnetic Nanoparticles for Biomedical Applications : Standardisation Aspects
  • 2020
  • Ingår i: 21st Polish Conference on Biocybernetics and Biomedical Engineering, PCBBE 2019. - Cham : Springer Verlag. - 9783030298845 ; , s. 316-326
  • Konferensbidrag (refereegranskat)abstract
    • Magnetic nanoparticles have many applications in biomedicine and other technical areas. Despite their huge economic impact, there are no standardised procedures available to measure their basic magnetic properties. The International Organization for Standardization is working on a series of documents on the definition of characteristics of magnetic nanomaterials. We review previous and ongoing European research projects on characteristics of magnetic nanoparticles and present results of an online survey among European researchers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy