SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Jian 1988 ) "

Sökning: WFRF:(Wu Jian 1988 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wu, Jian, 1988-, et al. (författare)
  • Halogen-free ionic liquids as excellent lubricants for PEEK-stainless steel contacts at elevated temperatures
  • 2016
  • Ingår i: Tribology International. - : Elsevier BV. - 0301-679X .- 1879-2464. ; 104, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Advanced polymers sliding against steel under ionic liquids (ILs) has great potential applications. However, halogen-containing ILs (h-ILs) often induce high corrosive wear to steel. In this work, halogen-free ILs (hf-ILs) were used as neat lubricants to investigate the performance of poly(ether-ether-ketone)-AISI304 stainless steel (PEEK-304ss) contacts at elevated temperatures. The results indicate that hf-ILs with short alkyl chains show excellent anti-corrosion and antiwear properties. The wear rates of 304ss lubricated by hf-ILs at 160 °C are 3–71% of those by h-ILs. The friction coefficients of PEEK-304ss lubricated by hf-ILs are just 13–33% of those by h-ILs. The excellent performance of hf-ILs can be attributed to the reason that hf-ILs will not generate any halogen containing acid during the test
  •  
2.
  • Wu, Jian, 1988-, et al. (författare)
  • Hollow IF-MoS2/r-GO Nanocomposite Filled Polyimide Coating with Improved Mechanical, Thermal and Tribological Properties
  • 2021
  • Ingår i: Coatings. - : MDPI. - 2079-6412. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyimide (PI) is one of the most excellent polymers for coating. However, the high friction coefficient and the high wear rate of pure PI limit its further applications. In this work, the hollow inorganic fullerene-like MoS2/reduced graphene oxide (HIF-MoS2/r-GO) nanocomposite filled PI coating is prepared by in situ polymerization. Reinforcement in mechanical strength and thermal stability is realized on the PI composite coating with incorporation of HIF-MoS2/r-GO, which performs better than carbon nanofiber (CNF). Reduced elastic modulus and hardness of HIF-MoS2/r-GO/PI coating is increased by 8.3% and 4.8%, respectively. The addition of HIF-MoS2/r-GO also results in 24% higher residual mass at 800 °C than CNF. Tribological study indicates that, HIF-MoS2/r-GO/PI achieves a wear rate reduction of 79% compared with pure PI under dry sliding condition, which is much more effective than other nanofillers including CNF, r-GO nanosheets and MoS2 nanoparticles. Under ionic liquid-lubricated condition, the presence of HIF-MoS2/r-GO in PI results in a 30% reduction in wear rate and 10% reduction in friction coefficient as compared to pure PI. It is thought that the HIF-MoS2/r-GO in PI can be slowly released to the frictional interface and form a protective film during sliding, in this way the aggregation problem is successfully solved.
  •  
3.
  •  
4.
  •  
5.
  • Wu, Jian, 1988-, et al. (författare)
  • Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication
  • 2020
  • Ingår i: Nano Energy. - : Elsevier. - 2211-2855 .- 2211-3282. ; 72
  • Tidskriftsartikel (refereegranskat)abstract
    • Triboelectric nanogenerator (TENG) has been proved as a powerful approach to harvest ambient mechanical energy for many technological applications. However, the service lifetime, stability and robustness of TENG are a challenge owing to the wearing and surface degradation. In this manuscript, liquid lubrication is introduced for the first time to increase the anti-wear property of TENG. The influence of the lubricant layer between the surfaces on TENG outputs is studied. It is surprising to find that proper liquid lubrication can not only provide a super wear-resistive TENG, but also can increase the electric outputs. In comparison to a slide-mode TENG with solid-solid contact, the service life of TENG can be greatly improved through liquid lubrication and there is no detected wear even after 36,000 cycles of operation. Specially, the open-circuit voltage and short-circuit current of squalane-lubricated TENG can be both more than 3 times of the unlubricated TENG. For unlubricated TENG, a transfer polymer film adheres to the harder material surface and reduces the contact effectiveness. Liquid lubrication is able to avoid the formation of the transfer film, increase the effective solid-solid contact area and squeeze the air at the interface, thus giving rise to higher electric outputs. Our study opens a new approach for extending the lifetime and stability of TENGs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy