SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xiao Ximeng) "

Sökning: WFRF:(Xiao Ximeng)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Qian, et al. (författare)
  • Genome-wide identification of resistance genes and cellular analysis of key gene knockout strain under 5-hydroxymethylfurfural stress in Saccharomyces cerevisiae
  • 2023
  • Ingår i: BMC Microbiology. - 1471-2180. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In bioethanol production, the main by-product, 5-hydroxymethylfurfural (HMF), significantly hinders microbial fermentation. Therefore, it is crucial to explore genes related to HMF tolerance in Saccharomyces cerevisiae for enhancing the tolerance of ethanol fermentation strains. A comprehensive analysis was conducted using genome-wide deletion library scanning and SGAtools, resulting in the identification of 294 genes associated with HMF tolerance in S. cerevisiae. Further KEGG and GO enrichment analysis revealed the involvement of genes OCA1 and SIW14 in the protein phosphorylation pathway, underscoring their role in HMF tolerance. Spot test validation and subcellular structure observation demonstrated that, following a 3-h treatment with 60mM HMF, the SIW14 gene knockout strain exhibited a 12.68% increase in cells with abnormal endoplasmic reticulum (ER) and a 22.41% increase in the accumulation of reactive oxygen species compared to the BY4741 strain. These findings indicate that the SIW14 gene contributes to the protection of the ER structure within the cell and facilitates the clearance of reactive oxygen species, thereby confirming its significance as a key gene for HMF tolerance in S. cerevisiae.
  •  
2.
  • Liao, Hong, et al. (författare)
  • Genome-wide identification of resistance genes and response mechanism analysis of key gene knockout strain to catechol in Saccharomyces cerevisiae
  • 2024
  • Ingår i: FRONTIERS IN MICROBIOLOGY. - 1664-302X. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineering Saccharomyces cerevisiae for biodegradation and transformation of industrial toxic substances such as catechol (CA) has received widespread attention, but the low tolerance of S. cerevisiae to CA has limited its development. The exploration and modification of genes or pathways related to CA tolerance in S. cerevisiae is an effective way to further improve the utilization efficiency of CA. This study identified 36 genes associated with CA tolerance in S. cerevisiae through genome-wide identification and bioinformatics analysis and the ERG6 knockout strain (ERG6 Delta) is the most sensitive to CA. Based on the omics analysis of ERG6 Delta under CA stress, it was found that ERG6 knockout affects pathways such as intrinsic component of membrane and pentose phosphate pathway. In addition, the study revealed that 29 genes related to the cell wall-membrane system were up-regulated by more than twice, NADPH and NADP(+) were increased by 2.48 and 4.41 times respectively, and spermidine and spermine were increased by 2.85 and 2.14 times, respectively, in ERG6 Delta. Overall, the response of cell wall-membrane system, the accumulation of spermidine and NADPH, as well as the increased levels of metabolites in pentose phosphate pathway are important findings in improving the CA resistance. This study provides a theoretical basis for improving the tolerance of strains to CA and reducing the damage caused by CA to the ecological environment and human health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy