SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Shuichang) "

Sökning: WFRF:(Zhang Shuichang)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Canfield, Donald E., et al. (författare)
  • A Mesoproterozoic iron formation
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 115:17, s. 3895-3904
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.
  •  
2.
  • Zhang, Shuichang, et al. (författare)
  • Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid-Proterozoic ocean
  • 2019
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 17:3, s. 225-246
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mesoproterozoic Era (1,600–1,000 million years ago, Ma) geochemical record is sparse, but, nevertheless, critical in untangling relationships between the evolution of eukaryotic ecosystems and the evolution of Earth-surface chemistry. The ca. 1,400 Ma Xiamaling Formation has experienced only very low-grade thermal maturity and has emerged as a promising geochemical archive informing on the interplay between climate, ecosystem organization, and the chemistry of the atmosphere and oceans. Indeed, the geochemical record of portions of the Xiamaling Formation has been used to place minimum constraints on concentrations of atmospheric oxygen as well as possible influences of climate and climate change on water chemistry and sedimentation dynamics. A recent study has argued, however, that some portions of the Xiamaling Formation deposited in a highly restricted environment with only limited value as a geochemical archive. In this contribution, we fully explore these arguments as well as the underlying assumptions surrounding the use of many proxies used for paleo-environmental reconstructions. In doing so, we pay particular attention to deep-water oxygen-minimum zone environments and show that these generate unique geochemical signals that have been underappreciated. These signals, however, are compatible with the geochemical record of those parts of the Xiamaling Formation interpreted as most restricted. Overall, we conclude that the Xiamaling Formation was most likely open to the global ocean throughout its depositional history. More broadly, we show that proper paleo-environmental reconstructions require an understanding of the biogeochemical signals generated in all relevant modern analogue depositional environments. We also evaluate new data on the δ 98 Mo of Xiamaling Formation shales, revealing possible unknown pathways of molybdenum sequestration into sediments and concluding, finally, that seawater at that time likely had a δ 98 Mo value of about 1.1‰.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Hammarlund, Emma U. (2)
Bjerrum, Christian J ... (2)
Canfield, Donald E. (2)
Zhang, Shuichang (2)
Wang, Huajian (2)
Wang, Xiaomei (2)
visa fler...
Haxen, Emma R. (2)
Zhao, Wenzhi (1)
Su, Jin (1)
Wen, Hanjie (1)
Ye, Yuntao (1)
visa färre...
Lärosäte
Lunds universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy