SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zheng Jiaming) "

Sökning: WFRF:(Zheng Jiaming)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Di, Jing, et al. (författare)
  • Samarium doped ceria-(Li/Na)(2)CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell
  • 2010
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753 .- 1873-2755. ; 195:15, s. 4695-4699
  • Tidskriftsartikel (refereegranskat)abstract
    • A composite of samarium doped ceria (SDC) and a binary carbonate eutectic (52 mol% Li2CO3/48 mol% Na2CO3) is investigated with respect to its morphology, conductivity and fuel cell performances. The morphology study shows the composition could prevent SDC particles from agglomeration. The conductivity is measured under air, argon and hydrogen, respectively. A sharp increase in conductivity occurs under all the atmospheres, which relates to the superionic phase transition in the interface phases between SDC and carbonates. Single cells with the composite electrolyte are fabricated by a uniaxial die-press method using NiO/electrolyte as anode and lithiated NiO/electrolyte as cathode. The cell shows a maximum power density of 590 mW cm(-2) at 600 degrees C, using hydrogen as the fuel and air as the oxidant. Unlike that of cells based on pure oxygen ionic conductor or pure protonic conductor, the open circuit voltage of the SDC-carbonate based fuel cell decreases with an increase in water content of either anodic or cathodic inlet gas, indicating the electrolyte is a co-ionic (H+/O2-) conductor. The results also exhibit that oxygen ionic conductivity contributes to the major part of the whole conductivity under fuel cell circumstances. (C) 2010 Elsevier B.V. All rights reserved.
  •  
2.
  • Fan, Liangdong, 1985-, et al. (författare)
  • Potential low-temperature application and hybrid-ionic conducting property of ceria-carbonate composite electrolytes for solid oxide fuel cells
  • 2011
  • Ingår i: International journal of hydrogen energy. - : Elsevier BV. - 0360-3199 .- 1879-3487. ; 36:16, s. 9987-9993
  • Tidskriftsartikel (refereegranskat)abstract
    • Ceria-carbonate composite materials have been widely investigated as candidate electrolytes for solid oxide fuel cells operated at 300-600 degrees C. However, fundamental studies on the composite electrolytes are still in the early stages and intensive research is demanded to advance their applications. In this study, the crystallite structure, microstructure, chemical activity, thermal expansion behavior and electrochemical properties of the samaria doped ceria-carbonate (SCC) composite have been investigated. Single cells using the SCC composite electrolyte and Ni-based electrodes were assembled and their electrochemical performances were studied. The SCC composite electrolyte exhibits good chemical compatibility and thermal-matching with Ni-based electrodes. Peak power density up to 916 mW cm(-2) was achieved at 550 degrees C, which was attributed to high electrochemical activity of both electrolyte and electrode materials. A stable discharge plateau was obtained under a current density of 1.5 A cm(-2) at 550 degrees C for 120 min. In addition, the ionic conducting property of the SCC composite electrolyte was investigated using electrochemical impedance spectroscopy technique. It was found that the hybrid-ionic conduction improves the total ionic conductivity and fuel cell performance. These results highlight potential low-temperature application of ceria-carbonate composite electrolytes for solid oxide fuel cells.
  •  
3.
  • Zheng, Zhejian, et al. (författare)
  • Capacity of Vehicular Networks in Mixed Traffic With CAVs and Human-Driven Vehicles
  • 2024
  • Ingår i: IEEE Internet of Things Journal. - 2327-4662. ; 11:10, s. 17852-17865
  • Tidskriftsartikel (refereegranskat)abstract
    • Connected and Automated Vehicles (CAVs) are characterized by diverse communication attributes, embodying the trajectory of future automotive progress. Meanwhile, the transportation system will be in a mixed stage of CAVs and Human-Driven Vehicles (HDVs) for a long time. The study of communication capacity and strategies for mixed traffic systems is of great significance for the popularization of CAVs and the deployment of communication infrastructures. However, current research mainly focuses on the communication capacity analysis in the scenario with full penetration of CAVs, while the influence caused by HDVs on Vehicle-to-Vehicle (V2V) communications and the capacity analysis of connected vehicles in mixed traffic systems need further understanding. To address this issue, this paper considers the shadow fading caused by HDVs on wireless communication links and analyzes the communication capacity in mixed traffic systems. Specifically, we first synthesize the V2V and Vehicle-to-Infrastructure (V2I) communication modes to propose an analytical framework for vehicular network communication capacity in mixed traffic. Then, a predictive communication strategy is also provided that caches the required content at infrastructure in advance according to predicted vehicle trajectories to improve the capacity of vehicular networks in mixed traffic. Furthermore, the derived capacity analysis theorems reveal the communication capacity of mixed traffic is closely related to the CAV penetration rate, the vehicle arrival rate, and the infrastructure deployment interval. Simulation results prove the effectiveness of the proposed framework, and the proposed predictive communication strategy can increase the mixed traffic communication capacity compared to existing communication strategies. The theoretical results herein can guide the implementation of vehicular network applications and the design of communication strategies in mixed traffic systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy