SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Steenwinkel Jurriaan E. M.) "

Sökning: WFRF:(de Steenwinkel Jurriaan E. M.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mudde, Saskia E., et al. (författare)
  • Predictive Modeling to Study the Treatment-Shortening Potential of Novel Tuberculosis Drug Regimens, Toward Bundling of Preclinical Data
  • 2022
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press. - 0022-1899 .- 1537-6613. ; 225:11, s. 1876-1885
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Given the persistently high global burden of tuberculosis, effective and shorter treatment options are needed. We explored the relationship between relapse and treatment length as well as interregimen differences for 2 novel antituberculosis drug regimens using a mouse model of tuberculosis infection and mathematical modeling. Methods Mycobacterium tuberculosis-infected mice were treated for up to 13 weeks with bedaquiline and pretomanid combined with moxifloxacin and pyrazinamide (BPaMZ) or linezolid (BPaL). Cure rates were evaluated 12 weeks after treatment completion. The standard regimen of isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE) was evaluated as a comparator. Results Six weeks of BPaMZ was sufficient to achieve cure in all mice. In contrast, 13 weeks of BPaL and 24 weeks of HRZE did not achieve 100% cure rates. Based on mathematical model predictions, 95% probability of cure was predicted to occur at 1.6, 4.3, and 7.9 months for BPaMZ, BPaL, and HRZE, respectively. Conclusion This study provides additional evidence for the treatment-shortening capacity of BPaMZ over BPaL and HRZE. To optimally use preclinical data for predicting clinical outcomes, and to overcome the limitations that hamper such extrapolation, we advocate bundling of available published preclinical data into mathematical models. By combining the evaluation of treatment efficacy of anti-tuberculosis drug regimens in a mouse tuberculosis infection model with mathematical modeling, it was found that BPaMZ had a higher treatment-shortening potential than BPaL, compared to the standard HRZE regimen.
  •  
2.
  • Clewe, Oskar, et al. (författare)
  • A model informed pre-clinical approach for identification of exposure-response and pharmacodynamic interactions in early tuberculosis drug development
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Tuberculosis treatment involves the use of multiple drugs and therefore there is a risk of not only pharmacokinetic interactions but also pharmacodynamic interactions. From many perspectives identification of pharmacodynamic interactions is not reasonable to carry out in a clinical setting. Thus, the aim of this work was to develop a model-informed pre-clinical approach for identification of exposure-response and pharmacodynamic interactions of drug combinations in order to inform early anti-tuberculosis drug development. In vitro time-kill experiments were performed with Mycobacterium tuberculosis using rifampicin, isoniazid or ethambutol alone as well as in different combinations at clinically relevant concentrations. The Multistate Tuberculosis Pharmacometric model was used to characterize the natural growth and exposure-response relationships of each drug after mono-exposure. Pharmacodynamic interactions during combination exposure were characterized using the General Pharmacodynamic Interaction model with successful separation of each drug’s effect on the potency (EC50) of the other drugs. The approach outlined in this work constitutes groundwork for model informed input to the development of new and enhancement of existing anti-tuberculosis combination regimens.
  •  
3.
  • Clewe, Oskar, et al. (författare)
  • A model-informed preclinical approach for prediction of clinical pharmacodynamic interactions of anti-TB drug combinations
  • 2018
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 73:2, s. 437-447
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Identification of pharmacodynamic interactions is not reasonable to carry out in a clinical setting for many reasons. The aim of this work was to develop a model-informed preclinical approach for prediction of clinical pharmacodynamic drug interactions in order to inform early anti-TB drug development.Methods: In vitro time-kill experiments were performed with Mycobacterium tuberculosis using rifampicin, isoniazid or ethambutol alone as well as in different combinations at clinically relevant concentrations. The multistate TB pharmacometric (MTP) model was used to characterize the natural growth and exposure-response relationships of each drug after mono exposure. Pharmacodynamic interactions during combination exposure were characterized by linking the MTP model to the general pharmacodynamic interaction (GPDI) model with successful separation of the potential effect on each drug's potency (EC50) by the combining drug(s).Results: All combinations showed pharmacodynamic interactions at cfu level, where all combinations, except isoniazid plus ethambutol, showed more effect (synergy) than any of the drugs alone. Using preclinical information, the MTP-GPDI modelling approach was shown to correctly predict clinically observed pharmacodynamic interactions, as deviations from expected additivity.Conclusions: With the ability to predict clinical pharmacodynamic interactions, using preclinical information, the MTP-GPDI model approach outlined in this study constitutes groundwork for model-informed input to the development of new and enhancement of existing anti-TB combination regimens.
  •  
4.
  • Mourik, Bas C., et al. (författare)
  • Improving treatment outcome assessment in a mouse tuberculosis model
  • 2018
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Preclinical treatment outcome evaluation of tuberculosis (TB) occurs primarily in mice. Current designs compare relapse rates of different regimens at selected time points, but lack information about the correlation between treatment length and treatment outcome, which is required to efficiently estimate a regimens' treatment-shortening potential. Therefore we developed a new approach. BALB/c mice were infected with a Mycobacterium tuberculosis Beijing genotype strain and were treated with rifapentine-pyrazinamide-isoniazid-ethambutol (R(p)ZHE), rifampicin-pyrazinamide-moxifloxacin-ethambutol (RZME) or rifampicin-pyrazinamide-moxifloxacin-isoniazid (RZMH). Treatment outcome was assessed in n = 3 mice after 9 different treatment lengths between 2-6 months. Next, we created a mathematical model that best fitted the observational data and used this for inter-regimen comparison. The observed data were best described by a sigmoidal E-max model in favor over linear or conventional E-max models. Estimating regimen-specific parameters showed significantly higher curative potentials for RZME and R(p)ZHE compared to RZMH. In conclusion, we provide a new design for treatment outcome evaluation in a mouse TB model, which (i) provides accurate tools for assessment of the relationship between treatment length and predicted cure, (ii) allows for efficient comparison between regimens and (iii) adheres to the reduction and refinement principles of laboratory animal use.
  •  
5.
  • Alffenaar, Jan-Willem C., et al. (författare)
  • Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs : An evaluation of in vitro, in vivo methodologies and human studies
  • 2022
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media S.A.. - 1663-9812. ; 13
  • Forskningsöversikt (refereegranskat)abstract
    • There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant in vitro, in vivo, in silico and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The in vitro assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The in vivo assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.
  •  
6.
  • Pieterman, Elise D., et al. (författare)
  • Superior Efficacy of a Bedaquiline, Delamanid, and Linezolid Combination Regimen in a Mouse Tuberculosis Model
  • 2021
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press. - 0022-1899 .- 1537-6613. ; 224:6, s. 1039-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The treatment success rate of drug-resistant (DR) tuberculosis is alarmingly low. Therefore, more effective and less complex regimens are urgently required.Methods: We compared the efficacy of an all oral DR tuberculosis drug regimen consisting of bedaquiline (25 mg/kg), delamanid (2.5 mg/kg), and linezolid (100 mg/kg) (BDL) on the mycobacterial load in the lungs and spleen of tuberculosis-infected mice during a treatment period of 24 weeks. This treatment was compared with the standard regimen of isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE). Relapse was assessed 12 weeks after treatment. Two logistic regression models were developed to compare the efficacy of both regimens.Results: Culture negativity in the lungs was achieved at 8 and 20 weeks of treatment with BDL and HRZE, respectively. After 14 weeks of treatment only 1 mouse had relapse in the BDL group, while in the H RZE group relapse was still observed at 24 weeks of treatment. Predictions from the final mathematical models showed that a 95% cure rate was reached after 20.5 and 28.5 weeks of treatment with BDL and HRZE, respectively.Conclusion: The BDL regimen was observed to be more effective than HRZE and could be a valuable option for the treatment of DR tuberculosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy