SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0949 8257 OR L773:1432 1327 "

Sökning: L773:0949 8257 OR L773:1432 1327

  • Resultat 1-25 av 154
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abelein, Axel, et al. (författare)
  • The hairpin conformation of the amyloid beta peptide is an important structural motif along the aggregation pathway
  • 2014
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 19:4-5, s. 623-634
  • Forskningsöversikt (refereegranskat)abstract
    • The amyloid beta (A beta) peptides are 39-42 residue-long peptides found in the senile plaques in the brains of Alzheimer's disease (AD) patients. These peptides self-aggregate in aqueous solution, going from soluble and mainly unstructured monomers to insoluble ordered fibrils. The aggregation process(es) are strongly influenced by environmental conditions. Several lines of evidence indicate that the neurotoxic species are the intermediate oligomeric states appearing along the aggregation pathways. This minireview summarizes recent findings, mainly based on solution and solid-state NMR experiments and electron microscopy, which investigate the molecular structures and characteristics of the A beta peptides at different stages along the aggregation pathways. We conclude that a hairpin-like conformation constitutes a common motif for the A beta peptides in most of the described structures. There are certain variations in different hairpin conformations, for example regarding H-bonding partners, which could be one reason for the molecular heterogeneity observed in the aggregated systems. Interacting hairpins are the building blocks of the insoluble fibrils, again with variations in how hairpins are organized in the cross-section of the fibril, perpendicular to the fibril axis. The secondary structure propensities can be seen already in peptide monomers in solution. Unfortunately, detailed structural information about the intermediate oligomeric states is presently not available. In the review, special attention is given to metal ion interactions, particularly the binding constants and ligand structures of A beta complexes with Cu(II) and Zn(II), since these ions affect the aggregation process(es) and are considered to be involved in the molecular mechanisms underlying AD pathology.
  •  
2.
  • Accardo, Antonella, et al. (författare)
  • High-relaxivity supramolecular aggregates containing peptides and Gd complexes as contrast agents in MRI
  • 2007
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 1432-1327 .- 0949-8257. ; 12:2, s. 267-276
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed supramolecular aggregates, obtained by assembling together two amphiphilic monomers (C18H37)2NCO(CH2)2CO(AdOO)5-G-CCK8 (AdOO is 8-amino-3,6-dioxaoctanoic acid, CCK8 is C-terminal octapeptide of cholecystokinin) and (C18H37)2NCO(CH2)2COLys(DTPAGlu)CONH2 (DTPAGlu is N,N-bis[2-[bis(carboxyethyl)amino]ethyl]-l-glutamic acid), are characterized for their structural parameters by dynamic light scattering and for their relaxometric properties, in the absence and in the presence of 0.9 wt% NaCl. Two different aggregates (micelles and bilayer structures) are present in the absence of NaCl, while only bilayer structures are observed at physiological ionic strength. The presence of NaCl increases the ionic strength, promoting a decrease in the repulsions between the polar heads and among the aggregates in solution, thus supporting the formation of large-curvature aggregates such as bilayer structures like vesicles. In these conditions the closed, vesicular shape and the large size (hydrodynamic radius of about 300 Å) of the aggregates allow a high number of paramagnetic gadolinium complexes and bioactive peptides to be accommodated on the inner and external surfaces . The presence of the salt causes a variation in the structural arrangement of the molecules and a partial rigidification of the assembled Gd(III) complexes on the surface vesicles, reducing their internal motions and giving an approximately 15% higher relaxivity value (r 1p = 21.0 and 18.6 Mm−1 s−1 in the presence and in the absence of NaCl, respectively). The vesicles obtained, for the high relaxivity of each gadolidium complex and for the presence of a surface-exposed bioactive peptide, are very promising candidates as target-selective MRI contrast agents.
  •  
3.
  • Alpeeva, I, et al. (författare)
  • Cyclometalated Ruthenium(II) Complexes As Efficient Redox Mediators in Peroxidase Catalysis
  • 2003
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 1432-1327 .- 0949-8257. ; 8:6, s. 683-688
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclometalated ruthenium(II) complexes, [Ru II(C~N)(N~N) 2]PF 6 [HC~N=2-phenylpyridine (Hphpy) or 2-(4'-tolyl)pyridine; N~N=2,2'-bipyridine, 1,10-phenanthroline, or 4,4'-dimethyl-2,2'-bipyridine], are rapidly oxidized by H 2O 2 catalyzed by plant peroxidases to the corresponding Ru III species. The commercial isoenzyme C of horseradish peroxidase (HRP-C) and two recently purified peroxidases from sweet potato (SPP) and royal palm tree (RPTP) have been used. The most favorable conditions for the oxidation have been evaluated by varying the pH, buffer, and H 2O 2 concentrations and the apparent second-order rate constants ( k app) have been measured. All the complexes studied are oxidized by HRP-C at similar rates and the rate constants k app are identical to those known for the best substrates of HRP-C (10 6–10 7 M -1 s -1). Both cationic (HRP-C) and anionic (SPP and RPTP) peroxidases show similar catalytic efficiency in the oxidation of the Ru II complexes. The mediating capacity of the complexes has been evaluated using the SPP-catalyzed co-oxidation of [Ru II(phpy)(bpy) 2]PF 6 and catechol as a poor peroxidase substrate as an example. The rate of enzyme-catalyzed oxidation of catechol increases more than 10,000-fold in the presence of the ruthenium complex. A simple routine for calculating the rate constant k c for the oxidation of catechol by the Ru III complex generated enzymatically from [Ru II(phpy)(bpy) 2] + is proposed. It is based on the accepted mechanism of peroxidase catalysis and involves spectrophotometric measurements of the limiting Ru II concentration at different concentrations of catechol. The calculated k c value of 0.75 M -1 s -1 shows that the cyclometalated Ru II complexes are efficient mediators in peroxidase catalysis.
  •  
4.
  • Banci, Lucia, et al. (författare)
  • Solid-state NMR studies of metal-free SOD1 fibrillar structures
  • 2014
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 19:4-5, s. 659-666
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper-zinc superoxide dismutase 1 (SOD1) is present in the protein aggregates deposited in motor neurons of amyotrophic lateral sclerosis (ALS) patients. ALS is a neurodegenerative disease that can be either sporadic (ca. 90 %) or familial (fALS). The most widely studied forms of fALS are caused by mutations in the sequence of SOD1. Ex mortuo SOD1 aggregates are usually found to be amorphous. In vitro SOD1, in its immature reduced and apo state, forms fibrillar aggregates. Previous literature data have suggested that a monomeric SOD1 construct, lacking loops IV and VII, (apoSOD Delta IV-VII), shares the same fibrillization properties of apoSOD1, both proteins having the common structural feature of the central beta-barrel. In this work, we show that structural information can be obtained at a site-specific level from solid-state NMR. The residues that are sequentially assignable are found to be located at the putative nucleation site for fibrillar species formation in apoSOD, as detected by other experimental techniques.
  •  
5.
  • Bassan, Arianna, et al. (författare)
  • A Theoretical Study of the Cis-Dihydroxylation Mechanism in Naphthalene 1,2-dioxygenase
  • 2004
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 9:4, s. 439-452
  • Tidskriftsartikel (refereegranskat)abstract
    • The catalytic mechanism of naphthalene 1,2-dioxygenase has been investigated by means of hybrid density functional theory. This Rieske-type enzyme, which contains an active site hosting a mononuclear non-heme iron(II) complex, uses dioxygen and two electrons provided by NADH to carry out the cis-dihydroxylation of naphthalene. Since a (hydro)peroxo-iron(III) moiety has been proposed to be involved in the catalytic cycle, it was probed whether and how this species is capable of cis-dihydroxylation of the aromatic substrate. Different oxidation and protonation states of the Fe–O2 complex were studied on the basis of the crystal structure of the enzyme with oxygen bound side-on to iron. It was found that feasible reaction pathways require a protonated peroxo ligand, FeIII–OOH; the deprotonated species, the peroxo-iron(III) complex, was found to be inert toward naphthalene. Among the different chemical patterns which have been explored, the most accessible one involves an epoxide intermediate, which may subsequently evolve toward an arene cation, and finally to the cis-diol. The possibility that an iron(V)-oxo species is formed prior to substrate hydroxylation was also examined, but found to implicate a rather high energy barrier. In contrast, a reasonably low barrier might lead to a high-valent iron-oxo species [i.e. iron(IV)-oxo] if a second external electron is supplied to the mononuclear iron center before dioxygenation.
  •  
6.
  •  
7.
  • Berger, Gilles, et al. (författare)
  • Insights into the structure-activity relationships of chiral 1,2-diaminophenylalkane platinum(II) anticancer derivatives
  • 2015
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 20:5, s. 841-853
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure-activity relationships of chiral 1,2-diaminophenylalkane platinum(II) anticancer derivatives are studied, including interactions with telomeric- and genomic-like DNA sequences, the pKa of their diaqua species, structural properties obtained from DFT calculations and resonant X-ray emission spectroscopy. The binding modes of the compounds to telomeric sequences were elucidated, showing no major differences with conventional cis-platinum(II) complexes like cisplatin, supporting that the cis-square planar geometry governs the binding of small Pt(II) complexes to G4 structures. Double-stranded DNA platination kinetics and acid-base constants of the diaqua species of the compounds were measured and compared, highlighting a strong steric dependence of the DNA-binding kinetics, but independent to stereoisomerism. Structural features of the compounds are discussed on the basis of dispersion-corrected DFT, showing that the most active series presents conformers for which the platinum atom is well devoid of steric hindrance. If reactivity indices derived from conceptual DFT do not show evidences for different reactivity between the compounds, RXES experiments provide new insight into the availability of platinum orbitals for binding to nucleophiles.
  •  
8.
  • Berggren, Gustav, et al. (författare)
  • Compounds with capacity to quench the tyrosyl radical in Pseudomonas aeruginosa ribonucleotide reductase
  • 2019
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 24:6, s. 841-848
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotide reductase (RNR) has been extensively probed as a target enzyme in the search for selective antibiotics. Here we report on the mechanism of inhibition of nine compounds, serving as representative examples of three different inhibitor classes previously identified by us to efficiently inhibit RNR. The interaction between the inhibitors and Pseudomonas aeruginosa RNR was elucidated using a combination of electron paramagnetic resonance spectroscopy and thermal shift analysis. All nine inhibitors were found to efficiently quench the tyrosyl radical present in RNR, required for catalysis. Three different mechanisms of radical quenching were identified, and shown to depend on reduction potential of the assay solution and quaternary structure of the protein complex. These results form a good foundation for further development of P. aeruginosa selective antibiotics. Moreover, this study underscores the complex nature of RNR inhibition and the need for detailed spectroscopic studies to unravel the mechanism of RNR inhibitors.
  •  
9.
  • Bergmann, Justin, et al. (författare)
  • Critical evaluation of a crystal structure of nitrogenase with bound N2 ligands
  • 2021
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 26:2-3, s. 341-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a 1.83 Å crystallographic structure of nitrogenase was suggested to show N2-derived ligands at three sites in the catalytic FeMo cluster, replacing the three μ2 bridging sulfide ligands (two in one subunit and the third in the other subunit) (Kang et al. in Science 368: 1381–1385, 2020). Naturally, such a structure is sensational, having strong bearings on the reaction mechanism of the enzyme. Therefore, it is highly important to ensure that the interpretation of the structure is correct. Here, we use standard crystallographic refinement and quantum refinement to evaluate the structure. We show that the original crystallographic raw data are strongly anisotropic, with a much lower resolution in certain directions than others. This, together with the questionable use of anisotropic B factors, give atoms an elongated shape, which may look like diatomic atoms. In terms of standard electron-density maps and real-space Z scores, a resting-state structure with no dissociated sulfide ligands fits the raw data better than the interpretation suggested by the crystallographers. The anomalous electron density at 7100 eV is weaker for the putative N2 ligands, but not lower than for several of the μ3 bridging sulfide ions and not lower than what can be expected from a statistical analysis of the densities. Therefore, we find no convincing evidence for any N2 binding to the FeMo cluster. Instead, a standard resting state without any dissociated ligands seems to be the most likely interpretation of the structure. Likewise, we find no support that the homocitrate ligand should show monodentate binding. Graphic abstract: [Figure not available: see fulltext.].
  •  
10.
  •  
11.
  • Borowski, Tomasz, et al. (författare)
  • The alkenyl migration mechanism catalyzed by extradiol dioxygenases : a hybrid dft study
  • 2012
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 17:6, s. 881-890
  • Tidskriftsartikel (refereegranskat)abstract
    • 6-Hydroxymethyl-6-methylcyclohexa-2,4-dienone is a mechanistic probe which when incubated with an extradiol dioxygenase yields a 2-tropolone product. This observation was originally interpreted as evidence supporting a direct heterolytic 1,2-alkenyl migration mechanism for a ring expansion reaction catalyzed by this class of Fe(II)-dependent nonheme enzymes (Xin and Bugg in J Am Chem Soc 130:10422-10430, 2008). In the work reported in this contribution we used quantum chemical methods to test whether such a mechanism is energetically possible and we found that it is not, neither for the mechanistic probe nor for the native catalytic cycle intermediate. Models of increasing complexity were used to calculate energy barriers to the heterolytic 1,2-alkenyl migration and alternative radical mechanisms. It was found that the former involves substantially higher barriers than the latter. A tentative radical mechanism that accounts for the transformation of the probe substrate to 2-tropolone was also proposed, and it involves acceptable barriers.
  •  
12.
  • Cao, Lili, et al. (författare)
  • Does the crystal structure of vanadium nitrogenase contain a reaction intermediate? Evidence from quantum refinement
  • 2020
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 25:6, s. 847-861
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Recently, a crystal structure of V-nitrogenase was presented, showing that one of the µ2 sulphide ions in the active site (S2B) is replaced by a lighter atom, suggested to be NH or NH2, i.e. representing a reaction intermediate. Moreover, a sulphur atom is found 7 Å from the S2B site, suggested to represent a storage site for this ion when it is displaced. We have re-evaluated this structure with quantum refinement, i.e. standard crystallographic refinement in which the empirical restraints (employed to ensure that the final structure makes chemical sense) are replaced by more accurate quantum–mechanical calculations. This allows us to test various interpretations of the structure, employing quantum–mechanical calculations to predict the ideal structure and to use crystallographic measures like the real-space Z-score and electron-density difference maps to decide which structure fits the crystallographic raw data best. We show that the structure contains an OH−-bound state, rather than an N2-derived reaction intermediate. Moreover, the structure shows dual conformations in the active site with ~ 14% undissociated S2B ligand, but the storage site seems to be fully occupied, weakening the suggestion that it represents a storage site for the dissociated ligand. Graphic abstract: [Figure not available: see fulltext.]
  •  
13.
  • Cao, Lili, et al. (författare)
  • N2H2 binding to the nitrogenase FeMo cluster studied by QM/MM methods
  • 2020
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 25:3, s. 521-540
  • Tidskriftsartikel (refereegranskat)abstract
    • We have made a systematic combined quantum mechanical and molecular mechanical (QM/MM) investigation of possible structures of the N2 bound state of nitrogenase. We assume that N2 is immediately protonated to a N2H2 state, thereby avoiding the problem of determining the position of the protons in the cluster. We have systematically studied both end-on and side-on structures, as well as both HNNH and NNH2 states. Our results indicate that the binding of N2H2 is determined more by interactions and steric clashes with the surrounding protein than by the intrinsic preferences of the ligand and the cluster. The best binding mode with both the TPSS and B3LYP density-functional theory methods has trans-HNNH terminally bound to Fe2. It is stabilised by stacking of the substrate with His-195 and Ser-278. However, several other structures come rather close in energy (within 3–35 kJ/mol) at least in some calculations: The corresponding cis-HNNH structure terminally bound to Fe2 is second best with B3LYP. A structure with HNNH2 terminally bound to Fe6 is second most stable with TPSS (where the third proton is transferred to the substrate from the homocitrate ligand). Structures with trans-HNNH, bound to Fe4 or Fe6, or cis-HNNH bound to Fe6 are also rather stable. Finally, with the TPSS functional, a structure with cis-HNNH side-on binding to the Fe3–Fe4–Fe5–Fe7 face of the cluster is also rather low in energy, but all side-on structures are strongly disfavoured by the B3LYP method.
  •  
14.
  •  
15.
  • Di Bari, Chiara, et al. (författare)
  • Halides inhibition of multicopper oxidases studied by FTIR spectroelectrochemistry using azide as an active infrared probe
  • 2017
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer. - 0949-8257 .- 1432-1327. ; 22:8, s. 1179-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • An IR spectroelectrochem. study of Trametes hirsuta laccase and Magnaporthe oryzae bilirubin oxidase has been performed using azide, an inhibitor of multicopper oxidases, as an active IR probe incorporated into the T2​/T3 copper cluster of the enzymes. The redox potential-​controlled measurements indicate that N3-​ stretching IR bands of azide ion bound to the T2​/T3 cluster are only detected for the oxidized enzymes, confirming that azide only binds to Cu2+. Moreover, the process of binding​/dissocn. of azide ion is shown to be reversible. The interaction of halide anions, which also inhibit multicopper oxidases, with the active site of the enzymes was studied by measuring the changes in the azide FTIR bands. Enzymes inhibited by azide respond differently upon addn. of fluoride or chloride ions to the sample soln. inhibited by azide. Fluoride ions compete with azide for binding at one of the T2​/T3 Cu ions, whereas competition from chloride ions is much less evident.
  •  
16.
  • Dong, Geng, et al. (författare)
  • Insight into the reaction mechanism of lipoyl synthase : a QM/MM study
  • 2018
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 23:2, s. 221-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoyl synthase (LipA) catalyses the final step of the biosynthesis of the lipoyl cofactor by insertion of two sulfur atoms at the C6 and C8 atoms of the protein-bound octanoyl substrate. In this reaction, two [4Fe4S] clusters and two molecules of S-adenosyl-l-methionine are used. One of the two FeS clusters is responsible for the generation of a powerful oxidant, the 5′-deoxyadenosyl radical (5′-dA•). The other (the auxiliary cluster) is the source of both sulfur atoms that are inserted into the substrate. In this paper, the spin state of the FeS clusters and the reaction mechanism is investigated by the combined quantum mechanical and molecular mechanics approach. The calculations show that the ground state of the two FeS clusters, both in the [4Fe4S]2+ oxidation state, is a singlet state with antiferromagnetically coupled high-spin Fe ions and that there is quite a large variation of the energies of the various broken-symmetry states, up to 40 kJ/mol. For the two S-insertion reactions, the highest energy barrier is found for the hydrogen-atom abstraction from the octanoyl substrate by 5′-dA•. The formation of 5′-dA• is very facile for LipA, with an energy barrier of 6 kJ/mol for the first S-insertion reaction and without any barrier for the second S-insertion reaction. In addition, the first S ion attack on the C6 radical of octanoyl was found to take place directly by the transfer of the H6 from the substrate to 5′-dA•, whereas for the second S-insertion reaction, a C8 radical intermediate was formed with a rate-limiting barrier of 71 kJ/mol.
  •  
17.
  • Dong, Geng, et al. (författare)
  • Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.
  • 2016
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 1432-1327 .- 0949-8257. ; 21:3, s. 383-394
  • Tidskriftsartikel (refereegranskat)abstract
    • The [NiFe] hydrogenases catalyse the reversible conversion of H2 to protons and electrons. The active site consists of a Fe ion with one carbon monoxide, two cyanide, and two cysteine (Cys) ligands. The latter two bridge to a Ni ion, which has two additional terminal Cys ligands. It has been suggested that one of the Cys residues is protonated during the reaction mechanism. We have used combined quantum mechanical and molecular mechanics (QM/MM) geometry optimisations, large QM calculations with 817 atoms, and QM/MM free energy simulations, using the TPSS and B3LYP methods with basis sets extrapolated to the quadruple zeta level to determine which of the four Cys residues is more favourable to protonate for four putative states in the reaction mechanism, Ni-SIa, Ni-R, Ni-C, and Ni-L. The calculations show that for all states, the terminal Cys-546 residue is most easily protonated by 14-51 kJ/mol, owing to a more favourable hydrogen-bond pattern around this residue in the protein.
  •  
18.
  • Dong, Geng, et al. (författare)
  • Reaction mechanism of formate dehydrogenase studied by computational methods
  • 2018
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 23:8, s. 1243-1254
  • Tidskriftsartikel (refereegranskat)abstract
    • Formate dehydrogenases (FDHs) are metalloenzymes that catalyse the reversible conversion of formate to carbon dioxide. Since such a process may be used to combat the greenhouse effect, FDHs have been extensively studied by experimental and theoretical methods. However, the reaction mechanism is still not clear; instead five putative mechanisms have been suggested. In this work, the reaction mechanism of FDH was studied by computational methods. Combined quantum mechanical and molecular mechanic (QM/MM) optimisations were performed to obtain the geometries. To get more accurate energies and obtain a detailed account of the surroundings, big-QM calculations with a very large (1121 atoms) QM region were performed. Our results indicate that the formate substrate does not coordinate directly to Mo when it enters the oxidised active site of the FDH, but instead resides in the second coordination sphere. The sulfido ligand abstracts a hydride ion from the substrate, giving a Mo(IV)–SH state and a thiocarbonate ion attached to Cys196. The latter releases CO2 when the active site is oxidised back to the resting (MoVI) state. This mechanism is supported by recent experimental studies.
  •  
19.
  • Ertem, Mehmed Z., et al. (författare)
  • N-O bond cleavage mechanism(s) in nitrous oxide reductase
  • 2012
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 17:5, s. 687-698
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum chemical calculations of active-site models of nitrous oxide reductase (N2OR) have been undertaken to elucidate the mechanism of N-O bond cleavage mediated by the supported tetranuclear Cu4S core (Cu-Z) found in the enzymatic active site. Using either a minimal model previously employed by Gorelsky et al. (J. Am. Chem. Soc. 128:278-290, 2006) or a more extended model including key residue side chains in the active-site second shell, we found two distinct mechanisms. In the first model, N2O binds to the fully reduced Cu-Z in a bent mu-(1,3)-O,N bridging fashion between the Cu-I and Cu-IV centers and subsequently extrudes N-2 while generating the corresponding bridged mu-oxo species. In the second model, substrate N2O binds loosely to one of the coppers of Cu-Z in a terminal fashion, i.e., using only the oxygen atom; loss of N-2 generates the same mu-oxo copper core. The free energies of activation predicted for these two alternative pathways are sufficiently close to one another that theory does not provide decisive support for one over the other, posing an interesting problem with respect to experiments that might be designed to distinguish between the two. Effects of nearby residues and active-site water molecules are also explored.
  •  
20.
  • Fuchs, Michael G. G., et al. (författare)
  • A combined computational and experimental investigation of the [2Fe-2S] cluster in biotin synthase
  • 2010
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 1432-1327 .- 0949-8257. ; 15:2, s. 203-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Biotin synthase was the first example of what is now regarded as a distinctive enzyme class within the radical S-adenosylmethionine superfamily, the members of which use Fe/S Clusters as the sulphur source in radical sulphur insertion reactions. The crystal structure showed that this enzyme contains a [2Fe-2S] cluster with a highly unusual arginine ligand, besides three normal cysteine ligands. However, the crystal structure is at such a low resolution that neither the exact coordination mode nor the role of this exceptional ligand has been elucidated yet, although it has been shown that it is not essential for enzyme activity. We have used quantum refinement of the crystal structure and combined quantum mechanical and molecular mechanical calculations to explore possible coordination modes and their influences on Cluster properties. The investigations show that the protonation state of the arginine ligand has little influence on cluster geometry, so even a positively charged guanidinium moiety would be in close proximity to the iron atom. Nevertheless, the crystallised enzyme most probably contains a deprotonated (neutral) arginine coordinating via the NH group. Furthermore, the Fe center dot center dot center dot Fe distance seems to be independent of the coordination mode and is in perfect agreement with distances in other structurally characterised [2Fe-2S] clusters. The exceptionally large Fe center dot center dot center dot Fe distance found in the crystal structure could not be reproduced.
  •  
21.
  • Georgiev, Valentin, 1976-, et al. (författare)
  • A comparison of the reaction mechanisms of iron- and manganese-containing 2,3-HPCD: an important spin transition for manganese
  • 2008
  • Ingår i: Journal of Biological Inorganic Chemistry. - Berlin : Springer. - 0949-8257 .- 1432-1327. ; 13:6, s. 929-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Homoprotocatechuate (HPCA) dioxygenases are enzymes that take part in the catabolism of aromatic compounds in the environment. They use molecular oxygen to perform the ring cleavage of ortho-dihydroxylated aromatic compounds. A theoretical investigation of the catalytic cycle for HPCA 2,3-dioxygenase isolated from Brevibacterium fuscum (Bf 2,3-HPCD) was performed using hybrid DFT with the B3LYP functional, and a reaction mechanism is suggested. Models of different sizes were built from the crystal structure of the enzyme and were used in the search for intermediates and transition states. It was found that the enzyme follows a reaction pathway similar to that for other non-heme iron dioxygenases, and for the manganese-dependent analog MndD, although with different energetics. The computational results suggest that the rate-limiting step for the whole reaction of Bf 2,3-HPCD is the protonation of the activated oxygen, with an energy barrier of 17.4 kcal/mol, in good agreement with the experimental value of 16 kcal/mol obtained from the overall rate of the reaction. Surprisingly, a very low barrier was found for the O-O bond cleavage step, 11.3 kcal/mol, as compared to 21.8 kcal/mol for MndD (sextet spin state). This result motivated additional studies of the manganese-dependent enzyme. Different spin coupling between the unpaired electrons on the metal and on the evolving substrate radical was observed for the two enzymes, and therefore the quartet spin state potential energy surface of the MndD reaction was studied. The calculations show a crossing between the sextet and the quartet surfaces, and it was concluded that a spin transition occurs and determines a barrier of 14.4 kcal/mol for the O-O bond cleavage, which is found to be the rate-limiting step in MndD. Thus the two 83% identical enzymes, using different metal ions as co-factors, were found to have similar activation energies (in agreement with experiment), but different rate-limiting steps.
  •  
22.
  • Georgiev, Valentin, et al. (författare)
  • Theoretical study of the catalytic reaction mechanism of MndD
  • 2006
  • Ingår i: Journal of Biological Inorganic Chemistry. - Berlin : Springer. - 0949-8257 .- 1432-1327. ; 11:5, s. 571-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Manganese-dependent homoprotocatechuate 2,3-dioxygenase (MndD) is an enzyme taking part in the catabolism of aromatic compounds in the environment. It uses molecular oxygen to perform an extradiol cleavage of the ring of the ortho-dihydroxylated aromatic compound homoprotocatechuate. A theoretical investigation of the reaction path for MndD was performed using hybrid density functional theory with the B3LYP functional, and a catalytic mechanism has been suggested. Models of different size were built from the crystal structure of the enzyme and were used in the search for intermediates and transition states. It was found that the substrate first binds at the active site as a monoanion. Next the dioxygen is bound, forming a hydroperoxo intermediate. The O-O bond, activated in this way undergoes homolytic cleavage leading to an oxyl and then to an extra epoxide radical with subsequent opening of the aromatic ring. The lactone ring is then hydrolyzed by the Mn-bound OH group, and the final product is obtained in the last reaction steps. Alternative reaction paths were considered, and their calculated barriers were found to be higher than for the suggested mechanism. The selectivity between the extra- and intra-cleavage pathways was found to be determined by the barriers for the decay of the radical state.
  •  
23.
  •  
24.
  • Grāve, Kristīne, et al. (författare)
  • Redox-induced structural changes in the di-iron and di-manganese forms of Bacillus anthracis ribonucleotide reductase subunit NrdF suggest a mechanism for gating of radical access
  • 2019
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 24:6, s. 849-861
  • Tidskriftsartikel (refereegranskat)abstract
    • Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y center dot) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 angstrom) and in complex with manganese (Mn-II/Mn-II, 1.30 angstrom). We also report three structures of the protein in complex with iron, either prepared anaerobically (Fe-II/Fe-II form, 1.32 angstrom), or prepared aerobically in the photo-reduced Fe-II/Fe-II form (1.63 angstrom) and with the partially oxidized metallo-cofactor (1.46 angstrom). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.
  •  
25.
  • Grāve, Kristīne, et al. (författare)
  • The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron
  • 2020
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 25:4, s. 571-582
  • Tidskriftsartikel (refereegranskat)abstract
    • Correct protein metallation in the complex mixture of the cell is a prerequisite for metalloprotein function. While some metals, such as Cu, are commonly chaperoned, specificity towards metals earlier in the Irving-Williams series is achieved through other means, the determinants of which are poorly understood. The dimetal carboxylate family of proteins provides an intriguing example, as different proteins, while sharing a common fold and the same 4-carboxylate 2-histidine coordination sphere, are known to require either a Fe/Fe, Mn/Fe or Mn/Mn cofactor for function. We previously showed that the R2lox proteins from this family spontaneously assemble the heterodinuclear Mn/Fe cofactor. Here we show that the class Ib ribonucleotide reductase R2 protein from Bacillus anthracis spontaneously assembles a Mn/Mn cofactor in vitro, under both aerobic and anoxic conditions, when the metal-free protein is subjected to incubation with Mn-II and Fe-II in equal concentrations. This observation provides an example of a protein scaffold intrinsically predisposed to defy the Irving-Williams series and supports the assumption that the Mn/Mn cofactor is the biologically relevant cofactor in vivo. Substitution of a second coordination sphere residue changes the spontaneous metallation of the protein to predominantly form a heterodinuclear Mn/Fe cofactor under aerobic conditions and a Mn/Mn metal center under anoxic conditions. Together, the results describe the intrinsic metal specificity of class Ib RNR and provide insight into control mechanisms for protein metallation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 154
Typ av publikation
tidskriftsartikel (144)
forskningsöversikt (6)
konferensbidrag (4)
Typ av innehåll
refereegranskat (140)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Ryde, Ulf (20)
Siegbahn, Per E. M. (16)
Widmalm, G (12)
Weintraub, A (11)
Högbom, Martin (8)
Berggren, Gustav (6)
visa fler...
Griese, Julia J. (5)
Blomberg, Margareta ... (5)
Nordlander, Ebbe (4)
Gräslund, Astrid (4)
Ott, Sascha (4)
Jornvall, H (4)
Magnuson, Ann (4)
Jansson, PE (4)
Johansson, Gunnar (3)
Lubitz, W (3)
Hansson, Mats (3)
Elmroth, Sofi (3)
Sjöberg, Britt-Marie (3)
Hoog, JO (3)
Martin, A. (2)
Hammarström, Leif (2)
Johansson, J (2)
Danielsson, Jens (2)
Jarvet, Jüri (2)
Luo, Jinghui (2)
Tiiman, Ann (2)
Wärmländer, Sebastia ... (2)
Griffiths, WJ (2)
Ingelman-Sundberg, M (2)
Styring, Stenbjörn (2)
Svensson, S (2)
Shleev, Sergey (2)
Al-Karadaghi, Salam (2)
Himo, Fahmi (2)
Schweda, EKH (2)
Georgiev, Valentin (2)
Carlsson, Uno (2)
Albert, MJ (2)
Alexson, SEH (2)
Urbina, F (2)
Graslund, A (2)
Alvelius, G (2)
Lehtio, J (2)
Sahlin, Margareta (2)
Sola, Miquel (2)
Pierloot, Kristine (2)
Logan, Derek T (2)
Hansson, Mattias (2)
Risberg, A. (2)
visa färre...
Lärosäte
Karolinska Institutet (50)
Lunds universitet (39)
Uppsala universitet (31)
Stockholms universitet (30)
Umeå universitet (6)
Linköpings universitet (6)
visa fler...
Kungliga Tekniska Högskolan (3)
Södertörns högskola (3)
Chalmers tekniska högskola (2)
Malmö universitet (1)
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (151)
Odefinierat språk (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (87)
Medicin och hälsovetenskap (5)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy