SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1553 7404 OR L773:1553 7390 "

Search: L773:1553 7404 OR L773:1553 7390

  • Result 1-25 of 508
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Agler, Caryline, et al. (author)
  • Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24
  • 2014
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 10:2, s. e1003991-
  • Journal article (peer-reviewed)abstract
    • Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia. Author Summary Neurodegenerative diseases are one of the most important causes of decline in an aging population. An important subset of these diseases are known as the hereditary ataxias, familial neurodegenerative diseases that affect the cerebellum causing progressive gait disturbance in both humans and dogs. We identified a mutation in RAB24, a gene associated with autophagy, in Old English Sheepdogs and Gordon Setters with hereditary ataxia. Autophagy is a process by which cell proteins and organelles are removed and recycled and its critical role in maintenance of the continued health of cells is becoming clear. We evaluated the brains of affected dogs and identified accumulations of autophagosomes within the cerebellum, suggesting a defect in the autophagy pathway. Our results suggest that a defect in the autophagy pathway results in neuronal death in a naturally occurring disease in dogs. The autophagy pathway should be investigated in human hereditary ataxia and may represent a therapeutic target in neurodegenerative diseases.
  •  
2.
  • Ahmad, Shafqat, et al. (author)
  • Gene x physical activity interactions in obesity : combined analysis of 111,421 individuals of European ancestry
  • 2013
  • In: PLOS Genetics. - : Public Library of Science. - 1553-7390 .- 1553-7404. ; 9:7, s. e1003607-
  • Journal article (peer-reviewed)abstract
    • Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age(2), sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS x physical activity interaction effect estimate (P-interaction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, P-interaction = 0.014 vs. n = 71,611, P-interaction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (P-interaction = 0.003) and the SEC16B rs10913469 (P-interaction = 0.025) variants showed evidence of SNP x physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.
  •  
3.
  • Ahsan, Muhammad, et al. (author)
  • The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases.
  • 2017
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 13:9
  • Journal article (peer-reviewed)abstract
    • Associations between epigenetic alterations and disease status have been identified for many diseases. However, there is no strong evidence that epigenetic alterations are directly causal for disease pathogenesis. In this study, we combined SNP and DNA methylation data with measurements of protein biomarkers for cancer, inflammation or cardiovascular disease, to investigate the relative contribution of genetic and epigenetic variation on biomarker levels. A total of 121 protein biomarkers were measured and analyzed in relation to DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed epigenome-wide association study (EWAS) and genome-wide association study (GWAS) analyses, and integrated biomarker, DNA methylation and SNP data using between 698 and 1033 samples depending on data availability for the different analyses. We identified 124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units' change per 1% change in DNA methylation levels and up to four standard units' change per copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by underlying genetic variants and three EWAS signals were confounded by smoking. While some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methylation levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker levels. We present associations between protein biomarker and DNA methylation levels at numerous loci in the genome. The associations are likely to reflect the underlying pattern of genetic variants, specific environmental exposures, or represent secondary effects to the pathogenesis of disease.
  •  
4.
  • Albert, Frank W., et al. (author)
  • A Comparison of Brain Gene Expression Levels in Domesticated and Wild Animals
  • 2012
  • In: PLOS Genetics. - : Public Library of Science. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002962-
  • Journal article (peer-reviewed)abstract
    • Domestication has led to similar changes in morphology and behavior in several animal species, raising the questionwhether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing toanalyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogsand wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with thosebetween domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selectedfor tameness or aggression towards humans. There were few gene expression differences between domesticated and wilddogs, pigs, and rabbits (30–75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs andC. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in thedifferent domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestiveevidence for the existence of a small group of genes that changed their expression in a similar fashion in differentdomesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticatedanimals and the tame and aggressive rats. However, two of the genes with the strongest expression differences betweenthe rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role ininfluencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific tothe given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise bedifferent.
  •  
5.
  • Alekeyenko, Artyom A., et al. (author)
  • Sequence-Specific Targeting of Dosage Compensation in Drosophila Favors an Active Chromatin Context
  • 2012
  • In: PLoS Genetics. - San Francisco : Public Library of Science. - 1553-7390 .- 1553-7404. ; 8:4, s. e1002646-
  • Journal article (peer-reviewed)abstract
    • The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only similar to 2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.
  •  
6.
  • Alvarez-Castro, Jose M., et al. (author)
  • How to perform meaningful estimates of genetic effects
  • 2008
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 4:5, s. e1000062-
  • Journal article (peer-reviewed)abstract
    • Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F-2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map.
  •  
7.
  • Ameur, Adam, et al. (author)
  • Ultra-deep sequencing of mouse mitochondrial DNA : Mutational patterns and their origins
  • 2011
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:3, s. e1002028-
  • Journal article (peer-reviewed)abstract
    • Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice) have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.
  •  
8.
  •  
9.
  • Andersson, Rebecca, et al. (author)
  • Differential role of cytosolic Hsp70s in longevity assurance and protein quality control
  • 2021
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 17:1
  • Journal article (peer-reviewed)abstract
    • 70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70's in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this 'defect' of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1 Delta ssa2 Delta mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast. Author summary All organisms have proteins that network together to stabilize and protect the cell throughout its lifetime. One of these types of proteins are the Hsp70s (heat shock protein 70). Hsp70 proteins take part in folding other proteins to their functional form, untangling proteins from aggregates, organize aggregates inside the cell and ensure that damaged proteins are destroyed. In this study, we investigated three closely related Hsp70 proteins in yeast; Ssa1, 2 and 4, in an effort to describe the functional difference of Ssa4 compared to Ssa1 and 2 and to answer the question: What types of cellular stress protection are necessary to reach a normal lifespan? We show that Ssa4 can perform many of the same tasks as Ssa1 and 2, but Ssa4 doesn't interact in the same manner as Ssa1 and 2 with other types of proteins. This leads to a delay in removing protein aggregates created after heat stress. Ssa4 also cannot ensure that misfolded proteins aggregate correctly inside the nucleus of the cell. However, this turns out not to be necessary for yeast cells to achieve a full lifespan, which shows us that as long as cells can prevent aggregates from forming in the first place, they can reach a full lifespan.
  •  
10.
  • Arendt, Maja Louise, et al. (author)
  • Genome-Wide Association Study of Golden Retrievers Identifies Germ-Line Risk Factors Predisposing to Mast Cell Tumours
  • 2015
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:11
  • Journal article (peer-reviewed)abstract
    • Canine mast cell tumours (CMCT) are one of the most common skin tumours in dogs with a major impact on canine health. Certain breeds have a higher risk of developing mast cell tumours, suggesting that underlying predisposing germ-line genetic factors play a role in the development of this disease. The genetic risk factors are largely unknown, although somatic mutations in the oncogene C-KIT have been detected in a proportion of CMCT, making CMCT a comparative model for mastocytosis in humans where C-KIT mutations are frequent. We have performed a genome wide association study in golden retrievers from two continents and identified separate regions in the genome associated with risk of CMCT in the two populations. Sequence capture of associated regions and subsequent fine mapping in a larger cohort of dogs identified a SNP associated with development of CMCT in the GNAI2 gene (p = 2.2x10(-16)), introducing an alternative splice form of this gene resulting in a truncated protein. In addition, disease associated haplotypes harbouring the hyaluronidase genes HYAL1, HYAL2 and HYAL3 on cfa20 and HYAL4, SPAM1 and HYALP1 on cfa14 were identified as separate risk factors in European and US golden retrievers, respectively, suggesting that turnover of hyaluronan plays an important role in the development of CMCT.
  •  
11.
  • Axelsson, Erik, et al. (author)
  • The genetic consequences of dog breed formation-Accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels
  • 2021
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:9
  • Journal article (peer-reviewed)abstract
    • Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a similar to 10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs-the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heartderived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity.
  •  
12.
  • Ayllon, Fernando, et al. (author)
  • The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males
  • 2015
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:11
  • Journal article (peer-reviewed)abstract
    • Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.
  •  
13.
  • Baranowska, Izabella, et al. (author)
  • Sensory ataxic neuropathy in golden retriever dogs is caused by a deletion in the mitochondrial tRNATyr gene
  • 2009
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 5:5, s. e1000499-
  • Journal article (peer-reviewed)abstract
    • Sensory ataxic neuropathy (SAN) is a recently identified neurological disorder in golden retrievers. Pedigree analysis revealed that all affected dogs belong to one maternal lineage, and a statistical analysis showed that the disorder has a mitochondrial origin. A one base pair deletion in the mitochondrial tRNA(Tyr) gene was identified at position 5304 in affected dogs after re-sequencing the complete mitochondrial genome of seven individuals. The deletion was not found among dogs representing 18 different breeds or in six wolves, ruling out this as a common polymorphism. The mutation could be traced back to a common ancestor of all affected dogs that lived in the 1970s. We used a quantitative oligonucleotide ligation assay to establish the degree of heteroplasmy in blood and tissue samples from affected dogs and controls. Affected dogs and their first to fourth degree relatives had 0-11% wild-type (wt) sequence, while more distant relatives ranged between 5% and 60% wt sequence and all unrelated golden retrievers had 100% wt sequence. Northern blot analysis showed that tRNA(Tyr) had a 10-fold lower steady-state level in affected dogs compared with controls. Four out of five affected dogs showed decreases in mitochondrial ATP production rates and respiratory chain enzyme activities together with morphological alterations in muscle tissue, resembling the changes reported in human mitochondrial pathology. Altogether, these results provide conclusive evidence that the deletion in the mitochondrial tRNA(Tyr) gene is the causative mutation for SAN.
  •  
14.
  • Bauer, Stefanie L., 1990-, et al. (author)
  • Sir2 and Reb1 antagonistically regulate nucleosome occupancy in subtelomeric X-elements and repress TERRAs by distinct mechanisms
  • 2022
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 18:9
  • Journal article (peer-reviewed)abstract
    • Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibiting the DNA damage response. In Saccharomyces cerevisiae, silent information regulator (Sir) proteins bind to terminal repeats and to subtelomeric X-elements, resulting in transcriptional silencing. Herein, we show that sir2 mutant strains display a specific loss of a nucleosome residing in the X-elements and that this deficiency is remarkably consistent between different telomeres. The X-elements contain several binding sites for the transcription factor Reb1 and we found that Sir2 and Reb1 compete for stabilizing/destabilizing this nucleosome, i.e. inactivation of Reb1 in a sir2 background reinstated the lost nucleosome. The telomeric-repeat-containing RNAs (TERRAs) originate from subtelomeric regions and extend into the terminal repeats. Both Sir2 and Reb1 repress TERRAs and in a sir2 reb1 double mutant, TERRA levels increased synergistically, showing that Sir2 and Reb1 act in different pathways for repressing TERRAs. We present evidence that Reb1 restricts TERRAs by terminating transcription. Mapping the 5′-ends of TERRAs from several telomeres revealed that the Sir2-stabilized nucleosome is the first nucleosome downstream from the transcriptional start site for TERRAs. Finally, moving an X-element to a euchromatic locus changed nucleosome occupancy and positioning, demonstrating that X-element nucleosome structure is dependent on the local telomere environment.
  •  
15.
  •  
16.
  • Bell, Jordana T, et al. (author)
  • Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population.
  • 2012
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 8:4
  • Journal article (peer-reviewed)abstract
    • Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype-phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a small set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects on age-related phenotypes.
  •  
17.
  • Berg, Frida, et al. (author)
  • The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage : A genetic explanation for poor thermoregulation in piglets
  • 2006
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 2:8, s. 1178-1181
  • Journal article (peer-reviewed)abstract
    • Piglets appear to lack brown adipose tissue, a specific type of fat that is essential for nonshivering thermogenesis in mammals, and they rely on shivering as the main mechanism for thermoregulation. Here we provide a genetic explanation for the poor thermoregulation in pigs as we demonstrate that the gene for uncoupling protein 1 (UCP1) was disrupted in the pig lineage. UCP1 is exclusively expressed in brown adipose tissue and plays a crucial role for thermogenesis by uncoupling oxidative phosphorylation. We used long-range PCR and genome walking to determine the complete genome sequence of pig UCP1. An alignment with human UCP1 revealed that exons 3 to 5 were eliminated by a deletion in the pig sequence. The presence of this deletion was confirmed in all tested domestic pigs, as well as in European wild boars, Bornean bearded pigs, wart hogs, and red river hogs. Three additional disrupting mutations were detected in the remaining exons. Furthermore, the rate of nonsynonymous substitutions was clearly elevated in the pig sequence compared with the corresponding sequences in humans, cattle, and mice, and we used this increased rate to estimate that UCP1 was disrupted about 20 million years ago.
  •  
18.
  • Berger, Juerg, et al. (author)
  • Systematic identification of genes that regulate neuronal wiring in the Drosophila visual system
  • 2008
  • In: PLOS GENET. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 4:5, s. e1000085-
  • Journal article (peer-reviewed)abstract
    • Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring.
  •  
19.
  • Berglund, Anna-Karin, 1979, et al. (author)
  • Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA. : Mapping ribonucleotides in mitochondrial DNA
  • 2017
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 13:2
  • Journal article (peer-reviewed)abstract
    • Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication.
  •  
20.
  • Bhalerao, Rupali R., et al. (author)
  • Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins
  • 2015
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11
  • Journal article (peer-reviewed)abstract
    • The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis.
  •  
21.
  • Bi, Huijuan, et al. (author)
  • A frame-shift mutation in COMTD1 is associated with impaired pheomelanin pigmentation in chicken
  • 2023
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:4
  • Journal article (peer-reviewed)abstract
    • The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.
  •  
22.
  • Biasoli, Deborah, et al. (author)
  • A synonymous germline variant in a gene encoding a cell adhesion molecule is associated with cutaneous mast cell tumour development in Labrador and Golden Retrievers
  • 2019
  • In: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 15:3
  • Journal article (peer-reviewed)abstract
    • Mast cell tumours are the most common type of skin cancer in dogs, representing a significant concern in canine health. The molecular pathogenesis is largely unknown, but breed-predisposition for mast cell tumour development suggests the involvement of inherited genetic risk factors in some breeds. In this study, we aimed to identify germline risk factors associated with the development of mast cell tumours in Labrador Retrievers, a breed with an elevated risk of mast cell tumour development. Using a methodological approach that combined a genome-wide association study, targeted next generation sequencing, and TaqMan genotyping, we identified a synonymous variant in the DSCAM gene on canine chromosome 31 that is associated with mast cell tumours in Labrador Retrievers. DSCAM encodes a cell-adhesion molecule. We showed that the variant has no effect on the DSCAM mRNA level but is associated with a significant reduction in the level of the DSCAM protein, suggesting that the variant affects the dynamics of DSCAM mRNA translation. Furthermore, we showed that the variant is also associated with mast cell tumours in Golden Retrievers, a breed that is closely related to Labrador Retrievers and that also has a predilection for mast cell tumour development. The variant is common in both Labradors and Golden Retrievers and consequently is likely to be a significant genetic contributor to the increased susceptibility of both breeds to develop mast cell tumours. The results presented here not only represent an important contribution to the understanding of mast cell tumour development in dogs, as they highlight the role of cell adhesion in mast cell tumour tumourigenesis, but they also emphasise the potential importance of the effects of synonymous variants in complex diseases such as cancer. Author summary The combination of various genetic and environmental risk factors makes the understanding of the molecular circuitry behind complex diseases, like cancer, a major challenge. The homogeneous nature of pedigree dog breed genomes makes these dogs ideal for the identification of both simple disease-causing genetic variants and genetic risk factors for complex diseases. Mast cell tumours are the most common type of canine skin cancer, and one of the most common cancers affecting dogs of most breeds. Several breeds, including Labrador Retrievers (which represent one of the most popular dog breeds), have an elevated risk of mast cell tumour development. Here, by using a methodological approach that combined different techniques, we identified a common inherited synonymous variant, that predisposes Labrador Retrievers to mast cell tumour development. Interestingly, we showed that this variant, despite its synonymous nature, appears to have an effect on translation dynamics as it is associated with reduced levels of DSCAM, a cell adhesion molecule. The results presented here reveal dysregulation of cell adhesion to be an important factor in mast cell tumour pathogenesis, and also highlight the important role that synonymous variants can play in complex diseases.
  •  
23.
  • Bivik, Caroline, et al. (author)
  • Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling
  • 2016
  • In: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 12:4
  • Journal article (peer-reviewed)abstract
    • The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21(CIP1)/p27(KIP1)/p57(Kip2)). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems.
  •  
24.
  • Björkegren, Johan L M, et al. (author)
  • Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis.
  • 2014
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 10:2
  • Journal article (peer-reviewed)abstract
    • Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-)Apob (100/100) Mttp (flox/flox)Mx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions.
  •  
25.
  • Bocher, Ozvan, et al. (author)
  • Testing for association with rare variants in the coding and non-coding genome : RAVA-FIRST, a new approach based on CADD deleteriousness score
  • 2022
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 18:9, s. e1009923-
  • Journal article (peer-reviewed)abstract
    • Rare variant association tests (RVAT) have been developed to study the contribution of rare variants widely accessible through high-throughput sequencing technologies. RVAT require to aggregate rare variants in testing units and to filter variants to retain only the most likely causal ones. In the exome, genes are natural testing units and variants are usually filtered based on their functional consequences. However, when dealing with whole-genome sequence (WGS) data, both steps are challenging. No natural biological unit is available for aggregating rare variants. Sliding windows procedures have been proposed to circumvent this difficulty, however they are blind to biological information and result in a large number of tests. We propose a new strategy to perform RVAT on WGS data: "RAVA-FIRST" (RAre Variant Association using Functionally-InfoRmed STeps) comprising three steps. (1) New testing units are defined genome-wide based on functionally-adjusted Combined Annotation Dependent Depletion (CADD) scores of variants observed in the gnomAD populations, which are referred to as "CADD regions". (2) A region-dependent filtering of rare variants is applied in each CADD region. (3) A functionally-informed burden test is performed with sub-scores computed for each genomic category within each CADD region. Both on simulations and real data, RAVA-FIRST was found to outperform other WGS-based RVAT. Applied to a WGS dataset of venous thromboembolism patients, we identified an intergenic region on chromosome 18 enriched for rare variants in early-onset patients. This region that was missed by standard sliding windows procedures is included in a TAD region that contains a strong candidate gene. RAVA-FIRST enables new investigations of rare non-coding variants in complex diseases, facilitated by its implementation in the R package Ravages.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 508
Type of publication
journal article (507)
research review (1)
Type of content
peer-reviewed (501)
other academic/artistic (7)
Author/Editor
Andersson, Leif (21)
Hofman, Albert (19)
Uitterlinden, André ... (19)
Ohlsson, Claes, 1965 (18)
Groop, Leif (17)
Rivadeneira, Fernand ... (17)
show more...
Lindblad-Toh, Kersti ... (16)
McCarthy, Mark I (16)
Gyllensten, Ulf (16)
Rudan, Igor (14)
Johansson, Åsa (14)
Campbell, Harry (13)
Wilson, James F. (13)
Lorentzon, Mattias, ... (12)
Vandenput, Liesbeth, ... (11)
Salomaa, Veikko (11)
Hallmans, Göran (11)
Eriksson, Joel (11)
Carlborg, Örjan (11)
Wichmann, H. Erich (11)
Rubin, Carl-Johan (11)
Hayward, Caroline (11)
Lind, Lars (10)
Wareham, Nicholas J. (10)
van Duijn, Cornelia ... (10)
Ingelsson, Erik (10)
Vitart, Veronique (10)
Peters, A (9)
Soranzo, Nicole (9)
Lehtimäki, Terho (9)
Spector, Timothy D (9)
Meitinger, Thomas (9)
Pramstaller, Peter P ... (9)
Polasek, Ozren (9)
Viikari, Jorma (8)
Gregersen, PK (8)
Hamsten, Anders (8)
Mellström, Dan, 1945 (8)
Mangino, Massimo (8)
Oostra, Ben A. (8)
Gieger, Christian (8)
Grundberg, Elin (8)
Wright, Alan F. (8)
Eriksson, Johan G. (8)
Harris, Tamara B (8)
Liu, Yongmei (8)
Wild, Sarah H (8)
Hirschhorn, Joel N. (8)
Gustafsson, Claes M, ... (8)
Timpson, Nicholas J. (8)
show less...
University
Karolinska Institutet (181)
Uppsala University (173)
Umeå University (71)
University of Gothenburg (65)
Swedish University of Agricultural Sciences (61)
Lund University (60)
show more...
Stockholm University (38)
Linköping University (27)
Royal Institute of Technology (9)
Chalmers University of Technology (9)
Örebro University (6)
Södertörn University (3)
Högskolan Dalarna (3)
Linnaeus University (2)
Stockholm School of Economics (1)
University of Skövde (1)
Swedish Museum of Natural History (1)
show less...
Language
English (508)
Research subject (UKÄ/SCB)
Natural sciences (191)
Medical and Health Sciences (157)
Agricultural Sciences (41)
Humanities (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view