SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Buchmann Nina) "

Search: WFRF:(Buchmann Nina)

  • Result 1-25 of 27
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lembrechts, Jonas J., et al. (author)
  • Global maps of soil temperature
  • 2022
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Journal article (peer-reviewed)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
2.
  • Besnard, Simon, et al. (author)
  • Quantifying the effect of forest age in annual net forest carbon balance
  • 2018
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:12
  • Journal article (peer-reviewed)abstract
    • Forests dominate carbon (C) exchanges between the terrestrial biosphere and the atmosphere on land. In the long term, the net carbon flux between forests and the atmosphere has been significantly impacted by changes in forest cover area and structure due to ecological disturbances and management activities. Current empirical approaches for estimating net ecosystem productivity (NEP) rarely consider forest age as a predictor, which represents variation in physiological processes that can respond differently to environmental drivers, and regrowth following disturbance. Here, we conduct an observational synthesis to empirically determine to what extent climate, soil properties, nitrogen deposition, forest age and management influence the spatial and interannual variability of forest NEP across 126 forest eddy-covariance flux sites worldwide. The empirical models explained up to 62% and 71% of spatio-temporal and across-site variability of annual NEP, respectively. An investigation of model structures revealed that forest age was a dominant factor of NEP spatio-temporal variability in both space and time at the global scale as compared to abiotic factors, such as nutrient availability, soil characteristics and climate. These findings emphasize the importance of forest age in quantifying spatio-temporal variation in NEP using empirical approaches.
  •  
3.
  • Ekberg, Anna, et al. (author)
  • Rhizospheric influence on soil respiration and decomposition in a temperate Norway spruce stand
  • 2007
  • In: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 39:8, s. 2103-2110
  • Journal article (peer-reviewed)abstract
    • Assessments of terrestrial carbon fluxes require a thorough understanding of links between primary production, soil respiration and carbon loss through drainage. In this study, stem girdling was used to terminate autotrophic soil respiration including rhizosphere respiration and root exudation in a temperate Norway spruce stand. Rates of soil respiration and dissolved organic carbon (DOC) formation were measured in the second year after girdling, comparing an intact plant rhizosphere continuum with an exclusive decomposer system. The molecular and isotopic composition of DOC in the soil solution was analysed with a coupled Py-GC/MS-C-IRMS system to distinguish between the carbon sources of dissolved carbon. Pyrolysis products were grouped according to their precursor origins: polysaccharides, proteins or of mixed origin (mainly derivates of lignins and proteins). When dead roots became available for decomposition, rates of heterotrophic soil respiration in girdling plots peaked at 6.5 mu mol m(-2) s(-1), comparable to peak rates of total soil respiration (autotrophic and heterotrophic) in control plots, 6.1 mu mol m(-2) s(-1). A significant response of soil respiration to temperature was found in control plots only, showing that an unlimiting supply of organic substrates for microbial respiration may mask any temperature effects. The enhanced decomposition in girdled plots was further supported by the isotopic composition of DOC in soil solution; all three precursor groups became isotopically enriched as the growing season progressed (polysaccharides by 2.3 parts per thousand, proteins by 1.9 parts per thousand, mixed origin group by 2.2 parts per thousand). This indicates a trophic level shift due to incorporation of organic substrate into the microbial food chain. In the control plots' mixed origin fraction, the isotopic composition changed over time from a signature resembling that of lignin (-28.9 parts per thousand) to one similar of the protein fraction (-25.7 parts per thousand). Significant temporal changes of structural DOC composition occurred in the girdling plots only. These results suggest that changes in the microbial community and in decomposition rates occurred in both girdled and control plots in the following ways: (i) increased substrate availability (dead roots) gave rise to generally enhanced performance of the decomposer community in girdled plots, (ii) root-derived exudates probably contributed to enhanced decomposition of recalcitrant lignin in the control plots and (iii) the structural composition of DOC seemed to be more a result of decomposition than of plant root exudation in all plots. (C) 2007 Elsevier Ltd. All rights reserved.
  •  
4.
  • Etzold, Sophia, et al. (author)
  • Number of growth days and not length of the growth period determines radial stem growth of temperate trees
  • 2022
  • In: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 25:2, s. 427-439
  • Journal article (peer-reviewed)abstract
    • Radial stem growth dynamics at seasonal resolution are essential to understand how forests respond to climate change. We studied daily radial growth of 160 individuals of seven temperate tree species at 47 sites across Switzerland over 8 years. Growth of all species peaked in the early part of the growth season and commenced shortly before the summer solstice, but with species-specific seasonal patterns. Day length set a window of opportunity for radial growth. Within this window, the probability of daily growth was constrained particularly by air and soil moisture, resulting in intermittent growth to occur only on 29 to 77 days (30% to 80%) within the growth period. The number of days with growth largely determined annual growth, whereas the growth period length contributed less. We call for accounting for these non-linear intra-annual and species-specific growth dynamics in tree and forest models to reduce uncertainties in predictions under climate change.
  •  
5.
  • Flechard, Chris R., et al. (author)
  • Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
  • 2020
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:6, s. 1583-1620
  • Journal article (peer-reviewed)abstract
    • The impact of atmospheric reactive nitrogen (N-r) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of N-r deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet N-r deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and N-r inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BAS-FOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm(-2) yr(-1) at total wet + dry inorganic N-r deposition rates (N-dep) of 0.3 to 4.3 gNm(-2) yr(-1) and from -4 to 361 g Cm-2 yr(-1) at N-dep rates of 0.1 to 3.1 gNm(-2) yr(-1) in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated N-dep where N-r leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N-2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27%(range 6 %-54 %) of N-dep at sites with N-dep < 1 gNm(-2) yr(-1) versus 65% (range 35 %-85 %) for N-dep > 3 gNm(-2) yr(-1). Such large levels of N-r loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with N-r deposition up to 2-2.5 gNm(-2) yr(-1), with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP/GPP ratio). At elevated N-dep levels (> 2.5 gNm(-2) yr(-1)), where inorganic N-r losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate N-dep levels was partly the result of geographical cross-correlations between N-dep and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. N-dep.
  •  
6.
  • Frank, Dorothe A., et al. (author)
  • Effects of climate extremes on the terrestrial carbon cycle : concepts, processes and potential future impacts
  • 2015
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:8, s. 2861-2880
  • Research review (peer-reviewed)abstract
    • Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.
  •  
7.
  • Fu, Zheng, et al. (author)
  • Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems
  • 2022
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:6, s. 2111-2123
  • Journal article (peer-reviewed)abstract
    • Understanding the critical soil moisture (SM) threshold (θcrit) of plant water stress and land surface energy partitioning is a basis to evaluate drought impacts and improve models for predicting future ecosystem condition and climate. Quantifying the θcrit across biomes and climates is challenging because observations of surface energy fluxes and SM remain sparse. Here, we used the latest database of eddy covariance measurements to estimate θcrit across Europe by evaluating evaporative fraction (EF)-SM relationships and investigating the covariance between vapor pressure deficit (VPD) and gross primary production (GPP) during SM dry-down periods. We found that the θcrit and soil matric potential threshold in Europe are 16.5% and −0.7 MPa, respectively. Surface energy partitioning characteristics varied among different vegetation types; EF in savannas had the highest sensitivities to SM in water-limited stage, and the lowest in forests. The sign of the covariance between daily VPD and GPP consistently changed from positive to negative during dry-down across all sites when EF shifted from relatively high to low values. This sign of the covariance changed after longer period of SM decline in forests than in grasslands and savannas. Estimated θcrit from the VPD–GPP covariance method match well with the EF–SM method, showing this covariance method can be used to detect the θcrit. We further found that soil texture dominates the spatial variability of θcrit while shortwave radiation and VPD are the major drivers in determining the spatial pattern of EF sensitivities. Our results highlight for the first time that the sign change of the covariance between daily VPD and GPP can be used as an indicator of how ecosystems transition from energy to SM limitation. We also characterized the corresponding θcrit and its drivers across diverse ecosystems in Europe, an essential variable to improve the representation of water stress in land surface models.
  •  
8.
  • Graf, Alexander, et al. (author)
  • Altered energy partitioning across terrestrial ecosystems in the European drought year 2018 : Energy partitioning in the drought 2018
  • 2020
  • In: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Journal article (peer-reviewed)abstract
    • Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO 2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO 2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
9.
  • Guanter, Luis, et al. (author)
  • Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence
  • 2014
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:14, s. E1327-E1333
  • Journal article (peer-reviewed)abstract
    • Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.
  •  
10.
  • Haesen, Stef, et al. (author)
  • ForestClim : Bioclimatic variables for microclimate temperatures of European forests
  • 2023
  • In: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 29:11, s. 2886-2892
  • Journal article (peer-reviewed)abstract
    • Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 x 25 m2 resolution.
  •  
11.
  • Harper, Anna B., et al. (author)
  • Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
  • 2021
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:6, s. 3269-3294
  • Journal article (peer-reviewed)abstract
    • Drought is predicted to increase in the future due to climate change, bringing with it myriad impacts on ecosystems. Plants respond to drier soils by reducing stomatal conductance in order to conserve water and avoid hydraulic damage. Despite the importance of plant drought responses for the global carbon cycle and local and regional climate feedbacks, land surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land Environment Simulator (JULES) vn4.9 on seasonal and annual timescales and evaluated 10 different representations of soil moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the tropics or high-latitude (cold-region) sites, while LE was best simulated in temperate and high-latitude (cold) sites. Errors that were not due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savanna and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil layers from 4 to 14 and the soil depth from 3.0 to 10.8 m. In addition, we found improvements when soil matric potential replaced volumetric water content in the stress equation (the "soil14_psi" experiments), when the critical threshold value for inducing soil moisture stress was reduced ("soil14_p0"), and when plants were able to access soil moisture in deeper soil layers ("soil14_dr&z.ast;2"). For LE, the biases were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and increased model biases but improved the simulated seasonal cycle and brought the monthly variance closer to the measured variance of LE. Further evaluation of the reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES or as a general way to improve land surface carbon and water fluxes in other models. In addition, using soil matric potential presents the opportunity to include plant functional type-specific parameters to further improve modeled fluxes.
  •  
12.
  • Heiskanen, Jouni, et al. (author)
  • The Integrated Carbon Observation System in Europe
  • 2022
  • In: Bulletin of the American Meteorological Society. - 0003-0007. ; 103:3, s. 855-872
  • Journal article (peer-reviewed)abstract
    • Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers' decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
  •  
13.
  • Högberg, Peter, et al. (author)
  • Large-scale forest girdling shows that current photosynthesis drives soil respiration
  • 2001
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 411:6839, s. 789-792
  • Journal article (peer-reviewed)abstract
    • The respiratory activities of plant roots, of their mycorrhizal fungi and of the free-living microbial heterotrophs (decomposers) in soils are significant components of the global carbon balance, but their relative contributions remain uncertain. To separate mycorrhizal root respiration from heterotrophic respiration in a boreal pine forest, we conducted a large-scale tree-girdling experiment, comprising 9 plots each containing about 120 trees. Tree-girdling involves stripping the stem bark to the depth of the current xylem at breast height terminating the supply of current photosynthates to roots and their mycorrhizal fungi without physically disturbing the delicate root-microbe-soil system. Here we report that girdling reduced soil respiration within 1-2 months by about 54% relative to respiration on ungirdled control plots, and that decreases of up to 37% were detected within 5 days. These values clearly show that the flux of current assimilates to roots is a key driver of soil respiration; they are conservative estimates of root respiration, however, because girdling increased the use of starch reserves in the roots. Our results indicate that models of soil respiration should incorporate measures of photosynthesis and of seasonal patterns of photosynthate allocation to roots.
  •  
14.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
15.
  • Lembrechts, Jonas J., et al. (author)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Journal article (peer-reviewed)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
16.
  • Manning, Peter, et al. (author)
  • Transferring biodiversity-ecosystem function research to the management of 'real-world' ecosystems
  • 2019
  • In: Mechanisms underlying the relationship between biodiversity and ecosystem function. - London : Elsevier. - 9780081029121 - 9780081029138 ; , s. 323-356
  • Book chapter (peer-reviewed)abstract
    • Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, despite evidence that biodiversity strongly affects ecosystem functioning, the influence of BEF research upon policy and the management of 'real-world' ecosystems, i.e., semi-natural habitats and agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three clusters based on the degree of human control over species composition and the spatial scale, in terms of grain, of the study, and discussing how the research of each cluster is best suited to inform particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled studies, is best able to provide general insights into mechanisms and to inform the management of species-poor and highly managed systems such as croplands, plantations, and the restoration of heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and species removal and addition studies, may allow for direct predictions of the impacts of species loss in specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may best inform landscape-scale management and national-scale policy. We discuss barriers to transfer within each cluster and suggest how new research and knowledge exchange mechanisms may overcome these challenges. To meet the potential for BEF research to address global challenges, we recommend transdisciplinary research that goes beyond these current clusters and considers the social-ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter to land managers and policy makers.
  •  
17.
  • Müller, Birgit, et al. (author)
  • Standardised and transparent model descriptions for agent-based models : Current status and prospects
  • 2014
  • In: Environmental Modelling & Software. - : Elsevier BV. - 1364-8152 .- 1873-6726. ; 55, s. 156-163
  • Journal article (peer-reviewed)abstract
    • Agent-based models are helpful to investigate complex dynamics in coupled human natural systems. However, model assessment, model comparison and replication are hampered to a large extent by a lack of transparency and comprehensibility in model descriptions. In this article we address the question of whether an ideal standard for describing models exists. We first suggest a classification for structuring types of model descriptions. Secondly, we differentiate purposes for which model descriptions are important. Thirdly, we review the types of model descriptions and evaluate each on their utility for the purposes. Our evaluation finds that the choice of the appropriate model description type is purpose-dependent and that no single description type alone can fulfil all requirements simultaneously. However, we suggest a minimum standard of model description for good modelling practice, namely the provision of source code and an accessible natural language description, and argue for the development of a common standard.
  •  
18.
  • Niu, Shuli, et al. (author)
  • Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
  • 2012
  • In: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 194:3, s. 775-783
  • Journal article (peer-reviewed)abstract
    • • It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
  •  
19.
  • Papale, Dario, et al. (author)
  • Standards and Open Access are the ICOS Pillars Reply to "Comments on 'The Integrated Carbon Observation System in Europe'"
  • 2023
  • In: Bulletin of the American Meteorological Society. - 0003-0007. ; 104:12, s. 953-955
  • Journal article (peer-reviewed)abstract
    • In his comment (Kowalski 2023) on our recent publication (Heiskanen et al. 2022) where we present the Integrated Carbon Observation System (ICOS) research infrastructure, Andrew Kowalski introduces three important and, in our opinion, different potential issues in the definition, collection, and availability of field measurements made by the ICOS network, and he proposes possible solutions to these issues.
  •  
20.
  • Peaucelle, Marc, et al. (author)
  • Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model
  • 2019
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 28:9, s. 1351-1365
  • Journal article (peer-reviewed)abstract
    • Aim: The mechanisms of plant trait adaptation and acclimation are still poorly understood and, consequently, lack a consistent representation in terrestrial biosphere models (TBMs). Despite the increasing availability of geo-referenced trait observations, current databases are still insufficient to cover all vegetation types and environmental conditions. In parallel, the growing number of continuous eddy-covariance observations of energy and CO2 fluxes has enabled modellers to optimize TBMs with these data. Past attempts to optimize TBM parameters mostly focused on model performance, overlooking the ecological properties of ecosystems. The aim of this study was to assess the ecological consistency of optimized trait-related parameters while improving the model performances for gross primary productivity (GPP) at sites. Location: Worldwide. Time period: 1992–2012. Major taxa studied: Trees and C3 grasses. Methods: We optimized parameters of the ORCHIDEE model against 371 site-years of GPP estimates from the FLUXNET network, and we looked at global covariation among parameters and with climate. Results: The optimized parameter values were shown to be consistent with leaf-scale traits, in particular, with well-known trade-offs observed at the leaf level, echoing the leaf economic spectrum theory. Results showed a marked sensitivity of trait-related parameters to local bioclimatic variables and reproduced the observed relationships between traits and climate. Main conclusions: Our approach validates some biological processes implemented in the model and enables us to study ecological properties of vegetation at the canopy level, in addition to some traits that are difficult to observe experimentally. This study stresses the need for: (a) implementing explicit trade-offs and acclimation processes in TBMs; (b) improving the representation of processes to avoid model-specific parameterization; and (c) performing systematic measurements of traits at FLUXNET sites in order to gather information on plant ecophysiology and plant diversity, together with micro-meteorological conditions.
  •  
21.
  • Reichstein, Markus, et al. (author)
  • Climate extremes and the carbon cycle
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 500:7462, s. 287-295
  • Journal article (peer-reviewed)abstract
    • The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.
  •  
22.
  • Schwalm, Christopher R., et al. (author)
  • Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis
  • 2010
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 16:2, s. 657-670
  • Journal article (peer-reviewed)abstract
    • The intensification of the hydrological cycle, with an observed and modeled increase in drought incidence and severity, underscores the need to quantify drought effects on carbon cycling and the terrestrial sink. FLUXNET, a global network of eddy covariance towers, provides dense data streams of meteorological data, and through flux partitioning and gap filling algorithms, estimates of net ecosystem productivity (F-NEP), gross ecosystem productivity (P), and ecosystem respiration (R). We analyzed the functional relationship of these three carbon fluxes relative to evaporative fraction (EF), an index of drought and site water status, using monthly data records from 238 micrometeorological tower sites distributed globally across 11 biomes. The analysis was based on relative anomalies of both EF and carbon fluxes and focused on drought episodes by biome and climatic season. Globally P was approximate to 50% more sensitive to a drought event than R. Network-wide drought-induced decreases in carbon flux averaged -16.6 and -9.3 g C m-2 month-1 for P and R, i.e., drought events induced a net decline in the terrestrial sink. However, in evergreen forests and wetlands drought was coincident with an increase in P or R during parts of the growing season. The most robust relationships between carbon flux and EF occurred during climatic spring for F-NEP and in climatic summer for P and R. Upscaling flux sensitivities to a global map showed that spatial patterns for all three carbon fluxes were linked to the distribution of croplands. Agricultural areas exhibited the highest sensitivity whereas the tropical region had minimal sensitivity to drought. Combining gridded flux sensitivities with their uncertainties and the spatial grid of FLUXNET revealed that a more robust quantification of carbon flux response to drought requires additional towers in all biomes of Africa and Asia as well as in the cropland, shrubland, savannah, and wetland biomes globally.
  •  
23.
  • Tang, Angela Che Ing, et al. (author)
  • Detection and attribution of an anomaly in terrestrial photosynthesis in Europe during the COVID-19 lockdown
  • 2023
  • In: Science of the Total Environment. - 0048-9697 .- 1879-1026. ; 903
  • Journal article (peer-reviewed)abstract
    • Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) − the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015–2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.
  •  
24.
  • Yao, Yunjun, et al. (author)
  • Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
  • 2017
  • In: Journal of Hydrology. - : Elsevier BV. - 0022-1694. ; 553, s. 508-526
  • Journal article (peer-reviewed)abstract
    • Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models.
  •  
25.
  • Yi, Chuixiang, et al. (author)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Journal article (peer-reviewed)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 27
Type of publication
journal article (25)
research review (1)
book chapter (1)
Type of content
peer-reviewed (27)
Author/Editor
Buchmann, Nina (26)
Varlagin, Andrej (9)
Montagnani, Leonardo (8)
Ibrom, Andreas (7)
Mammarella, Ivan (6)
Chen, Jiquan (6)
show more...
Kruijt, Bart (6)
Ciais, Philippe (5)
Lindroth, Anders (5)
Reichstein, Markus (5)
Wohlfahrt, Georg (5)
Knohl, Alexander (5)
Hörtnagl, Lukas (5)
Merbold, Lutz (5)
Nilsson, Mats (4)
Papale, Dario (4)
Mölder, Meelis (4)
Arriga, Nicola (4)
Desai, Ankur R. (4)
Heinesch, Bernard (4)
Van Meerbeek, Koenra ... (4)
Aalto, Juha (3)
Hylander, Kristoffer (3)
Luoto, Miska (3)
Peichl, Matthias (3)
Ardö, Jonas (3)
De Frenne, Pieter (3)
Zieminska, Kasia (3)
Merinero, Sonia (3)
Lenoir, Jonathan (3)
Beer, Christian (3)
Boeckx, Pascal (3)
Peñuelas, Josep (3)
Matteucci, Giorgio (3)
Boike, Julia (3)
Bauters, Marijn (3)
Cescatti, Alessandro (3)
Kutsch, Werner L. (3)
Manca, Giovanni (3)
Law, Beverly E. (3)
Noormets, Asko (3)
Vincke, Caroline (3)
Carbognani, Michele (3)
Bahn, Michael (3)
Blonder, Benjamin (3)
Lembrechts, Jonas J. (3)
Beringer, Jason (3)
Sutton, Mark A. (3)
Rammig, Anja (3)
Rinne, Janne (3)
show less...
University
Lund University (15)
Stockholm University (9)
Swedish University of Agricultural Sciences (6)
University of Gothenburg (3)
Umeå University (2)
Uppsala University (2)
show more...
Örebro University (1)
Chalmers University of Technology (1)
Linnaeus University (1)
Karlstad University (1)
show less...
Language
English (27)
Research subject (UKÄ/SCB)
Natural sciences (26)
Agricultural Sciences (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view