SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Busemann Henner) "

Sökning: WFRF:(Busemann Henner)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beaty, D.W, et al. (författare)
  • The potential science and engineering value of samples delivered to Earth by Mars sample return : International MSR Objectives and Samples Team (iMOST)
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:S1, s. 3-152
  • Tidskriftsartikel (refereegranskat)abstract
    • Executive Summary: Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the sample-related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub-objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned Martian samples would impact future Martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others. Summary of Objectives and Sub-Objectives for MSR Identified by iMOST: Objective 1 Interpret the primary geologic processes and history that formed the Martian geologic record, with an emphasis on the role of water. Intent To investigate the geologic environment(s) represented at the Mars 2020 landing site, provide definitive geologic context for collected samples, and detail any characteristics that might relate to past biologic processesThis objective is divided into five sub-objectives that would apply at different landing sites. 1.1 Characterize the essential stratigraphic, sedimentologic, and facies variations of a sequence of Martian sedimentary rocks. Intent To understand the preserved Martian sedimentary record. Samples A suite of sedimentary rocks that span the range of variation. Importance Basic inputs into the history of water, climate change, and the possibility of life 1.2 Understand an ancient Martian hydrothermal system through study of its mineralization products and morphological expression. Intent To evaluate at least one potentially life-bearing “habitable” environment Samples A suite of rocks formed and/or altered by hydrothermal fluids. Importance Identification of a potentially habitable geochemical environment with high preservation potential. 1.3 Understand the rocks and minerals representative of a deep subsurface groundwater environment. Intent To evaluate definitively the role of water in the subsurface. Samples Suites of rocks/veins representing water/rock interaction in the subsurface. Importance May constitute the longest-lived habitable environments and a key to the hydrologic cycle. 1.4 Understand water/rock/atmosphere interactions at the Martian surface and how they have changed with time. Intent To constrain time-variable factors necessary to preserve records of microbial life. Samples Regolith, paleosols, and evaporites. Importance Subaerial near-surface processes could support and preserve microbial life. 1.5 Determine the petrogenesis of Martian igneous rocks in time and space. Intent To provide definitive characterization of igneous rocks on Mars. Samples Diverse suites of ancient igneous rocks. Importance Thermochemical record of the planet and nature of the interior. Objective 2 Assess and interpret the potential biological history of Mars, including assaying returned samples for the evidence of life. Intent To investigate the nature and extent of Martian habitability, the conditions and processes that supported or challenged life, how different environments might have influenced the preservation of biosignatures and created nonbiological “mimics,” and to look for biosignatures of past or present life.This objective has three sub-objectives: 2.1 Assess and characterize carbon, including possible organic and pre-biotic chemistry. Samples All samples collected as part of Objective 1. Importance Any biologic molecular scaffolding on Mars would likely be carbon-based. 2.2 Assay for the presence of biosignatures of past life at sites that hosted habitable environments and could have preserved any biosignatures. Samples All samples collected as part of Objective 1. Importance Provides the means of discovering ancient life. 2.3 Assess the possibility that any life forms detected are alive, or were recently alive. Samples All samples collected as part of Objective 1. Importance Planetary protection, and arguably the most important scientific discovery possible. Objective 3 Quantitatively determine the evolutionary timeline of Mars. Intent To provide a radioisotope-based time scale for major events, including magmatic, tectonic, fluvial, and impact events, and the formation of major sedimentary deposits and geomorphological features. Samples Ancient igneous rocks that bound critical stratigraphic intervals or correlate with crater-dated surfaces. Importance Quantification of Martian geologic history. Objective 4 Constrain the inventory of Martian volatiles as a function of geologic time and determine the ways in which these volatiles have interacted with Mars as a geologic system. Intent To recognize and quantify the major roles that volatiles (in the atmosphere and in the hydrosphere) play in Martian geologic and possibly biologic evolution. Samples Current atmospheric gas, ancient atmospheric gas trapped in older rocks, and minerals that equilibrated with the ancient atmosphere. Importance Key to understanding climate and environmental evolution. Objective 5 Reconstruct the processes that have affected the origin and modification of the interior, including the crust, mantle, core and the evolution of the Martian dynamo. Intent To quantify processes that have shaped the planet's crust and underlying structure, including planetary differentiation, core segregation and state of the magnetic dynamo, and cratering. Samples Igneous, potentially magnetized rocks (both igneous and sedimentary) and impact-generated samples. Importance Elucidate fundamental processes for comparative planetology. Objective 6 Understand and quantify the potential Martian environmental hazards to future human exploration and the terrestrial biosphere. Intent To define and mitigate an array of health risks related to the Martian environment associated with the potential future human exploration of Mars. Samples Fine-grained dust and regolith samples. Importance Key input to planetary protection planning and astronaut health. Objective 7 Evaluate the type and distribution of in-situ resources to support potential future Mars exploration. Intent To quantify the potential for obtaining Martian resources, including use of Martian materials as a source of water for human consumption, fuel production, building fabrication, and agriculture. Samples Regolith. Importance Production of simulants that will facilitate long-term human presence on Mars. Summary of iMOST Findings: Several specific findings were identified during the iMOST study. While they are not explicit recommendations, we suggest that they should serve as guidelines for future decision making regarding planning of potential future MSR missions. The samples to be collected by the Mars 2020 (M-2020) rover will be of sufficient size and quality to address and solve a wide variety of scientific questions. Samples, by definition, are a statistical representation of a larger entity. Our ability to interpret the source geologic units and processes by studying sample sub sets is highly dependent on the quality of the sample context. In the case of the M-2020 samples, the context is expected to be excellent, and at multiple scales. (A) Regional and planetary context will be established by the on-going work of the multi-agency fleet of Mars orbiters. (B) Local context will be established at field area- to outcrop- to hand sample- to hand lens scale using the instruments carried by M-2020. A significant fraction of the value of the MSR sample collection would come from its organization into sample suites, which are small groupings of samples designed to represent key aspects of geologic or geochemical variation. If the Mars 2020 rover acquires a scientifically well-chosen set of samples, with sufficient geological diversity, and if those samples were returned to Earth, then major progress can be expected on all seven of the objectives proposed in this study, regardless of the final choice of landing site. The specifics of which parts of Objective 1 could be achieved would be different at each of the final three candidate landing sites, but some combination of critically important progress could be made at any of them. An aspect of the search for evidence of life is that we do not know in advance how evidence for Martian life would be preserved in the geologic record. In order for the returned samples to be most useful for both understanding geologic processes (Objective 1) and the search for life (Objective 2), the sample collection should contain BOTH typical and unusual samples from the rock units explored. This consideration should be incorporated into sample selection and the design of the suites. The retrieval missions of a MSR campaign should (1) minimize stray magnetic fields to which the samples would be exposed and carry a magnetic witness plate to record exposure, (2) collect and return atmospheric gas sample(s), and (3) collect additional dust and/or regolith sample mass if possible.
  •  
2.
  • Jenniskens, Peter, et al. (författare)
  • Fall, recovery, and characterization of the Novato L6 chondrite breccia
  • 2014
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379. ; 49:8, s. 1388-1425
  • Tidskriftsartikel (refereegranskat)abstract
    • The Novato L6 chondrite fragmental breccia fell in California on 17 October 2012, and was recovered after the Cameras for Allsky Meteor Surveillance (CAMS) project determined the meteor's trajectory between 95 and 46 km altitude. The final fragmentation from 42 to 22 km altitude was exceptionally well documented by digital photographs. The first sample was recovered before rain hit the area. First results from a consortium study of the meteorite's characterization, cosmogenic and radiogenic nuclides, origin, and conditions of the fall are presented. Some meteorites did not retain fusion crust and show evidence of spallation. Before entry, the meteoroid was 35 +/- 5 cm in diameter (mass 80 +/- 35 kg) with a cosmic-ray exposure age of 9 +/- 1 Ma, if it had a one-stage exposure history. A two-stage exposure history is more likely, with lower shielding in the last few Ma. Thermoluminescence data suggest a collision event within the last similar to 0.1 Ma. Novato probably belonged to the class of shocked L chondrites that have a common shock age of 470 Ma, based on the U, Th-He age of 420 +/- 220 Ma. The measured orbits of Novato, Jesenice, and Innisfree are consistent with a proposed origin of these shocked L chondrites in the Gefion asteroid family, perhaps directly via the 5: 2 mean-motion resonance with Jupiter. Novato experienced a stronger compaction than did other L6 chondrites of shock-stage S4. Despite this, a freshly broken surface shows a wide range of organic compounds.
  •  
3.
  • Jenniskens, Peter, et al. (författare)
  • The Creston, California, meteorite fall and the origin of L chondrites
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:4, s. 699-720
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been proposed that all L chondrites resulted from an ongoing collisional cascade of fragments that originated from the formation of the ~500 Ma old asteroid family Gefion, located near the 5:2 mean‐motion resonance with Jupiter in the middle Main Belt. If so, L chondrite pre‐atmospheric orbits should be distributed as expected for that source region. Here, we present contradictory results from the orbit and collisional history of the October 24, 2015, L6 ordinary chondrite fall at Creston, CA (here reclassified to L5/6). Creston's short 1.30 ± 0.02 AU semimajor axis orbit would imply a long dynamical evolution if it originated from the middle Main Belt. Indeed, Creston has a high cosmic ray exposure age of 40–50 Ma. However, Creston's small meteoroid size and low 4.23 ± 0.07° inclination indicate a short dynamical lifetime against collisions. This suggests, instead, that Creston originated most likely in the inner asteroid belt and was delivered via the ν6 resonance. The U‐Pb systematics of Creston apatite reveals a Pb‐Pb age of 4,497.1 ± 3.7 Ma, and an upper intercept U‐Pb age of 4,496.7 ± 5.8 Ma (2σ), circa 70 Ma after formation of CAI, as found for other L chondrites. The K‐Ar (age ~4.3 Ga) and U,Th‐He (age ~1 Ga) chronometers were not reset at ~500 Ma, while the lower intercept U‐Pb age is poorly defined as 770 ± 320 Ma. So far, the three known L chondrites that impacted on orbits with semimajor axes a <2.0 AU all have high (>3 Ga) K‐Ar ages. This argues for a source of some of our L chondrites in the inner Main Belt. Not all L chondrites originate in a continuous population of Gefion family debris stretching across the 3:1 mean‐motion resonance.
  •  
4.
  • Jenniskens, Peter, et al. (författare)
  • The impact and recovery of asteroid 2018 LA
  • 2021
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 56:4, s. 844-893
  • Tidskriftsartikel (refereegranskat)abstract
    • The June 2, 2018 impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. Twenty‐three meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as an HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g cm−3, a relatively low albedo pV ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth‐impacting orbit via the ν6 resonance. The impact that ejected 2018 LA in an orbit toward Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U‐Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb‐Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin.
  •  
5.
  • Schmitz, Birger, et al. (författare)
  • The micrometeorite flux to Earth during the Frasnian–Famennian transition reconstructed in the Coumiac GSSP section, France
  • 2019
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X. ; 522, s. 234-243
  • Tidskriftsartikel (refereegranskat)abstract
    • We have reconstructed the distribution of extraterrestrial chrome spinels in a marine limestone section across the Frasnian–Famennian stratotype section at Coumiac in southern France, providing the first insights on the types of micrometeorites and meteorites that fell on Earth at this time. The data can test whether the small cluster of roughly coeval, large impact structures is related to an asteroid breakup and shower with possible bearings also on the late Devonian biodiversity crisis. A total of ∼180 extraterrestrial spinel grains (>32 μm) were recovered from 957 kg of rock. Noble-gas measurements of individual grains show high solar-wind content, implying an origin from decomposed micrometeorites. Element analyses indicate a marked dominance of ordinary chondritic over achondritic grains, similar to the recent flux. The relation between H, L and LL meteorites is ∼29–58–13%, similar to the late Silurian flux, ∼31–63–6%, but different from the distribution, ∼45–45–10%, in the recent and the Cretaceous flux. Our data show no indication of a generally enhanced late Devonian micrometeorite flux that would accompany an asteroid shower. However, in a single limestone bed that formed immediately before the Upper Kellwasser horizon, that represents the main end-Frasnian species-turnover event, we found an enrichment of ∼10 ordinary chondritic grains (>63 μm) per 100 kg of rock, compared to the ∼1–3 grains per 100 kg that characterise background. The anomalously abundant grains are of mixed H, L and LL types and may be related to an enhanced flux of extraterrestrial dust during postulated minima in both the 405 ka and 2.4 Ma Earth-orbit eccentricity cycles at the onset of the Upper Kellwasser event. In the present solar system the dust accretion at Earth is the highest at eccentricity minima because of the spatial distribution of dust bands of the zodiacal cloud. Besides this small grain anomaly the data here and in previous studies support a stable meteorite flux through the late Silurian and Devonian, in contrast to the mid-Ordovician, when achondritic meteorites that are rare on Earth today were common, followed by the influx of a flood of debris related to the breakup of the L-chondrite parent body. Our accumulated data for six time windows through the Phanerozoic indicate that the ordinary chondrites make up a major fraction in the meteorite flux since at least the mid-Ordovician. We note that the sources in the asteroid belt of the H and L meteorites, the two most common types of meteorites today and through much of the Phanerozoic, remain elusive.
  •  
6.
  • Unsalan, Ozan, et al. (författare)
  • The Sariçiçek howardite fall in Turkey : Source crater of HED meteorites on Vesta and impact risk of Vestoids
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - Hoboken : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:5, s. 953-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sariçiçek howardite meteorite shower consisting of 343 documented stones occurred on September 2, 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Sariçiçek experienced a complex cosmic‐ray exposure history, exposed during ~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid was launched by an impact 22 ± 2 Ma ago to Earth (as did one‐third of all HED meteorites). SIMS dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages for the basaltic magma clasts. The apatite U‐Pb age of 4525 ± 17 Ma, K‐Ar age of ~3.9 Ga, and the U,Th‐He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic and impact‐related resetting ages, respectively. Petrographic; geochemical; and O‐, Cr‐, and Ti‐isotopic studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic observations and analysis of organic material indicate a small portion of carbonaceous chondrite material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 km s−1 from NW; fragmentations at 37, 33, 31, and 27 km altitude; and provide a pre‐atmospheric orbit that is the first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data indicate the similarity of Sariçiçek with the Vesta asteroid family (V‐class) spectra, a group of asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4 m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antionia impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was formed ~22 Ma ago.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy