SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Clayson Peter) "

Sökning: WFRF:(Clayson Peter)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Czeszumski, Artur, et al. (författare)
  • #EEGManyLabs: Investigating the Replicability of Influential EEG Experiments
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is growing awareness across the neuroscience community that the replicability of findings on the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardized analysis pipelines. Inspired by efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalography (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound influence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and selection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations.
  •  
2.
  • Snyder, Joel S., et al. (författare)
  • #EEGManyLabs: Investigating the replicability of influential EEG experiments
  • 2021
  • Ingår i: Cortex. - : Elsevier. - 1973-8102 .- 0010-9452. ; 144, s. 213-229
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing awareness across the neuroscience community that the replicability of findings about the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardised analysis pipelines. Inspired by recent efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalog-raphy (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound in-fluence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and se-lection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
3.
  • Cronin, Meghan F., et al. (författare)
  • Air-sea fluxes with a focus on heat and momentum
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Cronin, Gentemann, Edson, Ueki, Bourassa, Brown, Clayson, Fairall, Farrar, Gille, Gulev, Josey, Kato, Katsumata, Kent, Krug, Minnett, Parfitt, Pinker, Stackhouse, Swart, Tomita, Vandemark, Weller, Yoneyama, Yu and Zhang. Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m-2 and a bias of less than 5 W m-2. At present this accuracy target is met only at OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500 - 1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1 - 3 measurement platforms in each nominal 10° by 10° boxes. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean's influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (2)
annan publikation (1)
Typ av innehåll
refereegranskat (2)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Nilsonne, Gustav (2)
Busch, Niko A. (2)
Dreber Almenberg, An ... (2)
Johannesson, Magnus (2)
Dumas, Guillaume (2)
Czeszumski, Artur (2)
visa fler...
König, Peter (2)
Arvaneh, Mahnaz (2)
Benwell, Christopher (2)
Beste, Christian (2)
Bland, Amy (2)
Bradford, Daniel (2)
Bublatzky, Florian (2)
Clayson, Peter (2)
Cruse, Damian (2)
Ehinger, Benedikt (2)
Giorgio, Ganis (2)
Neal, Lauren (2)
Niso, Guiomar (2)
Ocklenburg, Sebastia ... (2)
Verona, Edelyn (2)
Vloeberghs, Robin (2)
Welke, Dominik (2)
Wessel, Jan (2)
Zakharov, Ilya (2)
Mushtaq, Faisal (2)
Kaltwasser, Laura (2)
Kouara, Layla (2)
Kulke, Louisa (2)
Ladouceur, Cecile (2)
Langer, Nicolas (2)
Oostenveld, Robert (2)
Pernet, Cyril R. (2)
Pourtois, Gilles (2)
Ruzzoli, Manuela (2)
Sass, Sarah (2)
Schaefer, Alexandre (2)
He, Xun (2)
Hinojosa, José (2)
Huber-Huber, Christo ... (2)
Inzlicht, Michael (2)
Jack, Bradley (2)
Liesefeld, Heinrich (2)
Luque, David (2)
MacNamara, Annmarie (2)
Muthuraman, Muthuram ... (2)
Senderecka, Magdalen ... (2)
Snyder, Joel S. (2)
Tamnes, Christian (2)
Tognoli, Emmanuelle (2)
visa färre...
Lärosäte
Handelshögskolan i Stockholm (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Karolinska Institutet (1)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy