SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fagan William F.) "

Sökning: WFRF:(Fagan William F.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • Guo, Guanming, et al. (författare)
  • Towards a mechanistic understanding of variation in aquatic food chain length
  • 2023
  • Ingår i: Ecology Letters. - : WILEY. - 1461-023X .- 1461-0248. ; 26:11, s. 1926-1939
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecologists have long sought to understand variation in food chain length (FCL) among natural ecosystems. Various drivers of FCL, including ecosystem size, resource productivity and disturbance, have been hypothesised. However, when results are aggregated across existing empirical studies from aquatic ecosystems, we observe mixed FCL responses to these drivers. To understand this variability, we develop a unified competition-colonisation framework for complex food webs incorporating all of these drivers. With competition-colonisation tradeoffs among basal species, our model predicts that increasing ecosystem size generally results in a monotonic increase in FCL, while FCL displays non-linear, oscillatory responses to resource productivity or disturbance in large ecosystems featuring little disturbance or high productivity. Interestingly, such complex responses mirror patterns in empirical data. Therefore, this study offers a novel mechanistic explanation for observed variations in aquatic FCL driven by multiple environmental factors.
  •  
4.
  •  
5.
  • Zhang, Helin, et al. (författare)
  • Complex nonmonotonic responses of biodiversity to habitat destruction
  • 2023
  • Ingår i: Ecology. - : WILEY. - 0012-9658 .- 1939-9170.
  • Tidskriftsartikel (refereegranskat)abstract
    • It has typically been assumed that habitat destruction, characterized by habitat loss and fragmentation, has consistently negative effects on biodiversity. While numerous empirical studies have shown the detrimental effects of habitat loss, debate continues as to whether habitat fragmentation has universally negative effects. To explore the effects of habitat fragmentation, we developed a simple model for site-occupancy dynamics in fragmented landscapes. With the model, we demonstrate that a competition-colonization trade-off can result in nonlinear oscillatory responses in biodiversity to both habitat loss and fragmentation. However, the overall pattern of habitat loss reducing species richness is still established, in line with empirical observations. Interestingly, the existence of localized oscillations in biodiversity can explain the mixed responses of species richness to habitat fragmentation per se observed in nature, thereby reconciling the debate on the fragmentation-diversity relationship. Therefore, this study offers a parsimonious mechanistic explanation for empirically observed biodiversity patterns in response to habitat destruction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy