SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gröningsson Per) "

Sökning: WFRF:(Gröningsson Per)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fransson, Claes, et al. (författare)
  • Late spectral evolution of the ejecta and reverse shock in SN 1987a
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 768:1, s. 88-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations with the Very Large Telescope and Hubble Space Telescope (HST) of the broad emission lines from the inner ejecta and reverse shock of SN 1987A from 1999 February until 2012 January (days 4381-9100 after explosion). We detect broad lines from H alpha, H beta, Mg I], Na I, [O I], [Ca II], and a feature at similar to 9220 angstrom. We identify the latter line with Mg II lambda lambda 9218, 9244, which is most likely pumped by Ly alpha fluorescence. H alpha and H beta both have a centrally peaked component extending to similar to 4500 km s(-1) and a very broad component extending to greater than or similar to 11,000 km s(-1), while the other lines have only the central component. The low-velocity component comes from unshocked ejecta, heated mainly by X-rays from the circumstellar environment, whereas the very broad component comes from faster ejecta passing through the reverse shock, created by the collision with the circumstellar ring. The flux in H alpha from the reverse shock has increased by a factor of four to six from 2000 to 2007. After that there is a tendency of flattening of the light curve, similar to what may be seen in the optical lines from the shocked ring. The core component seen in H alpha, [Ca II], and Mg II has experienced a similar increase, which is consistent with that found from HST photometry. The energy deposition of the external X-rays is calculated using explosion models for SN 1987A and we predict that the outer parts of the unshocked ejecta will continue to brighten because of this. The external X-ray illumination also explains the edge-brightened morphology of the ejecta seen in the HST images. We finally discuss evidence for dust in the ejecta from line asymmetries.
  •  
2.
  •  
3.
  • Fransson, Claes, et al. (författare)
  • Twenty Years of Supernova 1987A
  • 2007
  • Ingår i: The Messenger. ; 127:44
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
4.
  • Gröningsson, Per, et al. (författare)
  • Coronal emission from the shocked circumstellar ring of SN 1987A
  • 2006
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 456:2, s. 581-589
  • Tidskriftsartikel (refereegranskat)abstract
    • High resolution spectra with UVES/VLT of SN 1987A from December 2000 until November 2005 show a number of high ionization lines from gas with velocities of ± 350 km s-1, emerging from the shocked gas formed by the ejecta-ring collision. These include coronal lines from [Fe X], [Fe XI] and [Fe XIV] which have increased by a factor of 20 during the observed period. The evolution of the lines is similar to that of the soft X-rays, indicating that they arise in the same component. The line ratios are consistent with those expected from radiative shocks with velocity 310{-}390 km s-1, corresponding to a shock temperature of (1.6{-}2.5)× 106 K. A fraction of the coronal emission may, however, originate in higher velocity adiabatic shocks.
  •  
5.
  • Gröningsson, Per, et al. (författare)
  • High resolution spectroscopy of the inner ring of SN 1987A
  • 2008
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 479:3, s. 761-777
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss high resolution VLT/UVES observations (FWHM similar to 6 kms(-1)) from October 2002 (day similar to 5700 past explosion) of the shock interaction of SN 1987A and its circumstellar ring. A large number of narrow emission lines from the unshocked ring, with ion stages from neutral up to Ne V and Fe VII, have been identified. A nebular analysis of the narrow lines from the unshocked gas indicates gas densities of (similar to 1.5 - 5.0) x 10(3) cm(-3) and temperatures of similar to 6.5 x 10(3) - 2.4 x 104 K. This is consistent with the thermal widths of the lines. From the shocked component we observe a large range of ionization stages from neutral lines to [FeXIV]. From a nebular analysis we find that the density in the low ionization region is 4 x 10(6) - 10(7) cm-3. There is a clear difference in the high velocity extension of the low ionization lines and that of lines from [Fe X - XIV], with the latter extending up to similar to- 390 km s(-1) in the blue wing for [Fe XIV], while the low ionization lines extend to typically similar to- 260 km s(-1). For H alpha a faint extension up to similar to- 450 km s(-1) can be seen probably arising from a small fraction of shocked high density clumps. We discuss these observations in the context of radiative shock models, which are qualitatively consistent with the observations. A fraction of the high ionization lines may originate in gas which has yet not had time to cool, explaining the difference in width between the low and high ionization lines. The maximum shock velocities seen in the optical lines are similar to 510 km s(-1). We expect the maximum width of especially the low ionization lines to increase with time.
  •  
6.
  • Gröningsson, Per, et al. (författare)
  • High resolution spectroscopy of the line emission from the inner circumstellar ring of SN 1987A and its hot spots
  • 2007
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • We discuss high resolution VLT/UVES observations (FWHM ~ 6 km/s) from October 2002 (day ~5700 past explosion) of the shock interaction of SN 1987A and its circumstellar ring. A nebular analysis of the narrow lines from the unshocked gas indicates gas densities of (1.5-5.0)E3 cm-3 and temperatures of 6.5E3-2.4E4 K. This is consistent with the thermal widths of the lines. From the shocked component we observe a large range of ionization stages from neutral lines to [Fe XIV]. From a nebular analysis we find that the density in the low ionization region is 4E6-1E7 cm-3. There is a clear difference in the high velocity extension of the low ionization lines and that of lines from [Fe X-XIV], with the latter extending up to ~ -390 km/s in the blue wing for [Fe XIV], while the low ionization lines extend to typically ~ -260 km/s. For H-alpha a faint extension up to ~ -450 km/s can be seen probably arising from a small fraction of shocked high density clumps. We discuss these observations in the context of radiative shock models, which are qualitatively consistent with the observations. A fraction of the high ionization lines may originate in gas which has yet not had time to cool down, explaining the difference in width between the low and high ionization lines. The maximum shock velocities seen in the optical lines are ~ 510 km/s. We expect the maximum width of especially the low ionization lines to increase with time.
  •  
7.
  • Gröningsson, Per, 1976- (författare)
  • The rebirth of Supernova 1987A : a study of the ejecta-ring collision
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Supernovae are some of the most energetic phenomena in the Universe and they have throughout history fascinated people as they appeared as new stars in the sky. Supernova (SN) 1987A exploded in the nearby satellite galaxy, the Large Magellanic Cloud (LMC), at a distance of only 168,000 light years. The proximity of SN 1987A offers a unique opportunity to study the medium surrounding the supernova in great detail. Powered by the dynamical interaction of the ejecta with the inner circumstellar ring, SN 1987A is dramatically evolving at all wavelengths on time scales less than a year. This makes SN 1987A a great ``laboratory'' for studies of shock physics. Repeated observations of the ejecta-ring collision have been carried out using the UVES echelle spectrograph at VLT. This thesis covers seven epochs of high resolution spectra taken between October 1999 and November 2007. Three different emission line components are identified from the spectra. A narrow (~10 km/s) velocity component emerges from the unshocked ring. An intermediate (~250 km/s) component arises in the shocked ring, and a broad component extending to ~15,000 km/s comes from the reverse shock. Thanks to the high spectral resolution of UVES, it has been possible to separate the shocked from the unshocked ring emission. For the unshocked gas, ionization stages from neutral up to Ne V and Fe VII were found. The line fluxes of the low-ionization lines decline during the period of the observations. However, the fluxes of the [O III] and [Ne III] lines appear to increase and this is found to be consistent with the heating of the pre-shock gas by X-rays from the shock interactions. The line emission from the ejecta-ring collision increases rapidly as more gas is swept up by the shocks. This emission comes from ions with a range of ionization stages (e.g., Fe II-XIV). The low-ionization lines show an increase in their line widths which is consistent with that these lines originate from radiative shocks. The high-ionization line profiles (Fe X-XIV) initially show larger spectral widths, which indicates that at least a fraction of the emission comes from non-radiative shocks.
  •  
8.
  • Gröningsson, Per, et al. (författare)
  • Time evolution of the line emission from the inner circumstellar ring of SN 1987A and its hot spots
  • 2008
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 492:2, s. 481-491
  • Tidskriftsartikel (refereegranskat)abstract
    • We present seven epochs between October 1999 and November 2007 of high resolution VLT/UVES echelle spectra of the ejecta-ring collision of SN 1987A.
The fluxes of most of the narrow lines from the unshocked gas decreased by a factor of 2-3 during this period, consistent with the decay from the initial ionization by the shock break-out. However, [O III] in particular shows an increase up to day ~6800. This agrees with radiative shock models where the pre-shocked gas is heated by the soft X-rays from the shock. The evolution of the [O III] line ratio shows a decreasing temperature of the unshocked ring gas, consistent with a transition from a hot, low density component which was heated by the initial flash ionization to the lower temperature in the pre-ionized gas ahead of the shocks.
The line emission from the shocked gas increases rapidly as the shock sweeps up more gas. We find that the neutral and high ionization lines follow the evolution of the Balmer lines roughly, while the intermediate ionization lines evolve less rapidly. Up to day ~6800, the optical light curves have a similar evolution to that of the soft X-rays. The break between day 6500 and day 7000 for [O III] and [Ne III] is likely due to recombination to lower ionization levels. Nevertheless, the evolution of the [Fe XIV] line, as well as the lines from the lowest ionization stages, continue to follow that of the soft X-rays, as expected.
There is a clear difference in the line profiles between the low and intermediate ionization lines, and those from the coronal lines at the earlier epochs. This shows that these lines arise from regions with different physical conditions, with at least a fraction of the coronal lines coming from adiabatic shocks. At later epochs the line widths of the low ionization lines, however, increase and approach those of the high ionization lines of [ Fe X-XIV] . The H line profile can be traced up to ~500 km s-1 at the latest epoch. This is consistent with the cooling time of shocks propagating into a density of (1-4) 104 cm-3. This means that these shocks are among the highest velocity radiative shocks observed.
  •  
9.
  •  
10.
  • Kjær, Karina, et al. (författare)
  • SN 1987A at the end of its second decade
  • 2007
  • Ingår i: AIP Conference Proceedings. - : American Institute of Physics. - 0094-243X.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
11.
  • Mattila, Seppo, et al. (författare)
  • Abundances and Density Structure of the Inner Circumstellar Ring Around SN 1987A
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 717:2, s. 1140-1156
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical spectroscopic data of the inner circumstellar ring around supernova (SN) 1987A from the Anglo-Australian Telescope and the Very Large Telescope (VLT) between ~1400 and ~5000 days post-explosion. We also assembled the available optical and near-infrared line fluxes from the literature between ~300 and ~2000 days. These line light curves were fitted with a photoionization model to determine the density structure and the elemental abundances for the inner ring. We found densities ranging from 1 × 103 to 3 × 104 atoms cm-3 and a total mass of the ionized gas of ~5.8 × 10-2 M sun within the inner ring. Abundances inferred from the optical and near-infrared data were also complemented with estimates of Lundqvist & Fransson based on ultraviolet lines. This way we found an He/H ratio (by number of atoms) of 0.17 ± 0.06 which is roughly 30% lower than previously estimated and twice the solar and the Large Magellanic Cloud (LMC) value. We found an N/O ratio of 1.5 ± 0.7, and the total (C+N+O)/(H+He) abundance about 1.6 times its LMC value or roughly 0.6 times the most recent solar value. An iron abundance of 0.20 ± 0.11 times solar was found which is within the range of the estimates for the LMC. We also present late time (~5000-7500 days) line light curves of [O III], [Ne III], [Ne IV], [Ar III], [Ar IV], and [Fe VII] from observations with the VLT. We compared these with model fluxes and found that an additional 102 atoms cm-3 component was required to explain the data of the highest ionization lines. Such low-density gas is expected in the H II-region interior to the inner ring which likely extends also to larger radii at higher latitudes (out of the ring plane). At epochs later than ~5000 days, our models underproduce the emission of most of these lines as expected due to the contribution from the interaction of the SN ejecta with the ring.
  •  
12.
  • Tziamtzis, Anestis, 1978-, et al. (författare)
  • The outer rings of SN 1987A
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 527:14, s. 35-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We investigate the physical properties and structure of the outer rings of SN 1987A to understand their formation and evolution. Methods: We used low resolution spectroscopy from VLT/FORS1 and high resolution spectra from VLT/UVES to estimate the physical conditions in the outer rings, using nebular analysis for emission lines such as [O II], [O III], [N II], and [S II]. We also measured the velocity at two positions of the outer rings to test a geometrical model for the rings. Additionally, we used data from the HST science archives to check the evolution of the outer rings of SN 1987A for a period that covers almost 11 years. Results: We measured the flux in four different regions, two for each outer ring. We chose regions away from the two bright neighbouring stars and as far as possible from the inner ring and created light curves for the emission lines of [O III], Hα, and [N II]. The light curves display a declining behaviour, which is consistent with the initial supernova-flash powering of the outer rings. The electron density of the emitting gas in the outer rings, as estimated by nebular analysis from the [O II] and [S II] lines, is ≲ 3 × 103 cm-3, has not changed over the last ~15 years, and the [N II] temperature remains also fairly constant at ~1.2 × 104 K. We find no obvious difference in density and temperature for the two outer rings. The highest density, as estimated from the decay of Hα, could be ~5 × 103 cm-3 however, and because the decay is somewhat faster in the southern outer ring than it is in the northern, the highest density in the outer rings may be found in the southern outer ring. For an assumed distance of 50 kpc to the supernova, the distance between the supernova and the closest parts of the outer rings could be as short as ~1.7 × 1018cm. Interaction between the supernova ejecta and the outer rings could therefore start in less than ~20 years. We do not expect the outer rings to show the same optical display as the equatorial ring when this happens. Instead soft X-rays should provide a better way of observing the ejecta - outer rings interaction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy