SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hoppe UC) "

Search: WFRF:(Hoppe UC)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Paar, V, et al. (author)
  • Anti-coagulation for COVID-19 treatment: both anti-thrombotic and anti-inflammatory?
  • 2021
  • In: Journal of thrombosis and thrombolysis. - : Springer Science and Business Media LLC. - 1573-742X .- 0929-5305. ; 51:1, s. 226-231
  • Journal article (peer-reviewed)abstract
    • Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has been linked to a higher risk of mortality compared to influenza, which is mainly due to severe secondary diseases, such as acute respiratory distress syndrome (ARDS). In turn, ARDS is characterized by an acute inflammation and an excessive activity of the coagulation cascade, rising the vulnerability for venous thromboembolic events. In order to investigate the relation of inflammation and the influence of coagulation factors on their release, human peripheral mononuclear blood cells (PBMCs) were treated with autologous serum, heparinized plasma and different doses of fibrin. Thereafter, the concentration of pro-inflammatory cytokines and chemokines in the secretome of PBMCs was measured by enzyme-linked immunosorbent assay. Our analyses revealed autologous serum to significantly increase the secretion of cytokines and chemokines after 24 h of incubation time. Furthermore, the addition of fibrin markedly increased the secretion of cytokines and chemokines by PBMCs in a dose-dependent manner. Consequently, in accordance with previous studies, our study outlines that anti-coagulation may constitute a promising tool for the treatment of SARS-CoV-2, reducing both, the cytokine storm, as well as the risk for thrombotic complications.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Wernly, B, et al. (author)
  • Anti-CD3 Antibody Treatment Reduces Scar Formation in a Rat Model of Myocardial Infarction
  • 2020
  • In: Cells. - : MDPI AG. - 2073-4409. ; 9:2
  • Journal article (peer-reviewed)abstract
    • Introduction: Antibody treatment with anti-thymocyte globulin (ATG) has been shown to be cardioprotective. We aimed to evaluate which single anti-T-cell epitope antibody alters chemokine expression at a level similar to ATG and identified CD3, which is a T-cell co-receptor mediating T-cell activation. Based on these results, the effects of anti-CD3 antibody treatment on angiogenesis and cardioprotection were tested in vitro and in vivo. Methods: Concentrations of IL-8 and MCP-1 in supernatants of human peripheral blood mononuclear cell (PBMC) cultures following distinct antibody treatments were evaluated by Enzyme-linked Immunosorbent Assay (ELISA). In vivo, anti-CD3 antibodies or vehicle were injected intravenously in rats subjected to acute myocardial infarction (AMI). Chemotaxis and angiogenesis were evaluated using tube and migration assays. Intracellular pathways were assessed using Western blot. Extracellular vesicles (EVs) were quantitatively evaluated using fluorescence-activated cell scanning, exoELISA, and nanoparticle tracking analysis. Also, microRNA profiles were determined by next-generation sequencing. Results: Only PBMC stimulation with anti-CD3 antibody led to IL-8 and MCP-1 changes in secretion, similar to ATG. In a rat model of AMI, systemic treatment with an anti-CD3 antibody markedly reduced infarct scar size (27.8% (Inter-quartile range; IQR 16.2–34.9) vs. 12.6% (IQR 8.3–27.2); p < 0.01). The secretomes of anti-CD3 treated PBMC neither induced cardioprotective pathways in cardiomyocytes nor pro-angiogenic mechanisms in human umbilical vein endothelial cell (HUVECs) in vitro. While EVs quantities remained unchanged, PBMC incubation with an anti-CD3 antibody led to alterations in EVs miRNA expression. Conclusion: Treatment with an anti-CD3 antibody led to decreased scar size in a rat model of AMI. Whereas cardioprotective and pro-angiogenetic pathways were unaltered by anti-CD3 treatment, qualitative changes in the EVs miRNA expression could be observed, which might be causal for the observed cardioprotective phenotype. We provide evidence that EVs are a potential cardioprotective treatment target. Our findings will also provide the basis for a more detailed analysis of putatively relevant miRNA candidates.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view