SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Juhlin Christopher Professor) "

Search: WFRF:(Juhlin Christopher Professor)

  • Result 1-25 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dehghannejad, Mahdieh, 1979- (author)
  • Reflection seismic investigation in the Skellefte ore district : A basis for 3D/4D geological modeling
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • The Skellefte ore district in northern Sweden is a Palaeoproterozoic volcanic arc and one of the most important ones hosting volcanogenic massive sulfide (VMS) deposits, producing mainly base metals and orogenic gold deposits. Due to high metal prices and increased difficulties in finding shallow deposits, the exploration for and exploitation of mineral resources is quickly being moved to greater depths. For this reason, a better understanding of the geological structures in 3D down to a few kilometers depth is required as a tool for ore targeting. As exploration and mining go deeper, it becomes more and more evident why a good understanding of geology in 3D at exploration depths, and even greater, is important to optimize both exploration and mining.Following a successful pilot 3D geological modeling project in the western part of the district, the Kristineberg mining area, a new project "VINNOVA 4D modeling of the Skellefte district" was launched in 2008, with the aim of improving the existing models, especially at shallow depth and extending the models to the central district. More than 100 km of reflection seismic (crooked) profiles were acquired, processed and interpreted in conjunction with geological observations and potential field data. Results were used to constrain the 3D geological model of the study area and provided new insights about the geology and mineral potential at depth.Results along the seismic profiles in the Kristineberg mining area proved the capability of the method for imaging reflections associated with mineralization zones in the area, and we could suggest that the Kristineberg mineralization and associated structures dip to the south down to at least a depth of about 2 km. In the central Skellefte area, we were able to correlate main reflections and diffractions with the major faults and shear zones. Cross-dip analysis, reflection modeling, pre-stack time migration, swath 3D processing and finite-difference seismic modeling allowed insights about the origin of some of the observed reflections and in defining the imaging challenges in the associated geological environments.
  •  
2.
  • Huang, Fei, 1987- (author)
  • 3D Time-lapse Analysis of Seismic Reflection Data to Characterize the Reservoir at the Ketzin CO2 Storage Pilot Site
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • 3D time-lapse seismics, also known as 4D seismics, have great potential for monitoring the migration of CO2 at underground storage sites. This thesis focuses on time-lapse analysis of 3D seismic reflection data acquired at the Ketzin CO2 geological storage site in order to improve understanding of the reservoir and how CO2 migrates within it.Four 3D seismic surveys have been acquired to date at the site, one baseline survey in 2005 prior to injection, two repeat surveys in 2009 and 2012 during the injection period, and one post-injection survey in 2015. To accurately simulate time-lapse seismic signatures in the subsurface, detailed 3D seismic property models for the baseline and repeat surveys were constructed by integrating borehole data and the 3D seismic data. Pseudo-boreholes between and beyond well control were built. A zero-offset convolution seismic modeling approach was used to generate synthetic time-lapse seismograms. This allowed simulations to be performed quickly and limited the introduction of artifacts in the seismic responses.Conventional seismic data have two limitations, uncertainty in detecting the CO2 plume in the reservoir and limited temporal resolution. In order to overcome these limitations, complex spectral decomposition was applied to the 3D time-lapse seismic data. Monochromatic wavelet phase and reflectivity amplitude components were decomposed from the 3D time-lapse seismic data. Wavelet phase anomalies associated with the CO2 plume were observed in the time-lapse data and verified by a series of seismic modeling studies. Tuning frequencies were determined from the balanced amplitude spectra in an attempt to discriminate between pressure effects and CO2 saturation. Quantitative assessment of the reservoir thickness and CO2 mass were performed.Time-lapse analysis on the post-injection survey was carried out and the results showed a consistent tendency with the previous repeat surveys in the CO2 migration, but with a decrease in the size of the amplitude anomaly. No systematic anomalies above the caprock were detected. Analysis of the signal to noise ratio and seismic simulations using the detailed 3D property models were performed to explain the observations. Estimation of the CO2 mass and uncertainties in it were investigated using two different approaches based on different velocity-saturation models.
  •  
3.
  • Kazemeini, Sayed Hesammoddin, 1973- (author)
  • Seismic Investigations at the Ketzin CO2 Injection Site, Germany: Applications to Subsurface Feature Mapping and CO2 Seismic Response Modeling
  • 2009
  • Doctoral thesis (other academic/artistic)abstract
    • 3D seismic data are widely used for many different purposes. Despite different objectives, a common goal in almost all 3D seismic programs is to attain better understanding of the subsurface features. In gas injection projects, which are mainly for Enhanced Oil Recovery (EOR) and recently for environmental purposes, seismic data have an important role in the gas monitoring phase. This thesis deals with a 3D seismic investigation at the CO2 injection site at Ketzin, Germany. I focus on two critical aspects of the project: the internal architecture of the heterogeneous Stuttgart reservoir and the detectability of the CO2 response from surface seismic data. Conventional seismic methods are not able to conclusively map the internal reservoir architecture due to their limited seismic resolution. In order to overcome this limitation, I use the Continuous Wavelet Transform (CWT) decomposition technique, which provides frequency spectra with high temporal resolution without the disadvantages of the windowing process associated with the other techniques. Results from applying this technique reveal more of the details of sand bodies within the Stuttgart Formation. The CWT technique also helps to detect and map remnant gas on the top of the structure. In addition to this method, I also show that the pre-stack spectral blueing method, which is presented for the first time in this research, has an ability to enhance seismic resolution with fewer artifacts in comparison with the post-stack spectral blueing method. The second objective of this research is to evaluate the CO2 response on surface seismic data as a feasibility study for CO2 monitoring. I build a rock physics model to estimate changes in elastic properties and seismic velocities caused by injected CO2. Based on this model, I study the seismic responses for different CO2 injection geometries and saturations using one dimensional (1D) elastic modeling and two dimensional (2D) acoustic finite-difference modeling. Results show that, in spite of random and coherent noises and reservoir heterogeneity, the CO2 seismic response should be strong enough to be detectable on surface seismic data. I use a similarity-based image registration method to isolate amplitude changes due to the reservoir from amplitude changes caused by time shifts below the reservoir. In support of seismic monitoring using surface seismic data, I also show that acoustic impedance versus Poisson’s ratio cross-plot is a suitable attribute for distinguishing gas-bearing sands from brine-bearing sands.
  •  
4.
  • Lundberg, Emil, 1977- (author)
  • 2D and 3D Reflection Seismic Studies over Scandinavian Deformation Zones
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • The study of deformation zones is of great geological interest since these zones can separate rocks with different characteristics. The geometry of these structures with depth is important for interpreting the geological history of an area. Paper I to III present 2D reflection seismic data over deformation zones targeting structures in the upper 3-4 km of the crust. These seismic profiles were acquired with a crooked-line recording geometry. 2D seismic processing assumes a straight recording geometry. Most seismic processing tools were developed for sub-horizontally layered structures. However, in the crystalline rocks in Scandinavia more complex structures with contrasting dip directions and folding are common. The crooked-line recording geometries have the benefit of sampling a 3D volume. This broader sampling can be used to gain knowledge about the true geometry of subsurface structures. Correlation with geological maps and other geophysical data along with seismic data modeling can be used to differentiate reflections from faults or fracture zones from other reflectivity, e.g. mafic bodies. Fault and fracture zones may have a large impedance contrast to surrounding rocks, while ductile shear zones usually do not. The ductile shear zones can instead be interpreted based on differing reflectivity patterns between domains and correlations with geology or magnetic maps. Paper IV presents 3D reflection seismic data from a quick-clay landslide site in southern Sweden. The area is located in a deformation zone and structures in unconsolidated sediments may have been influenced by faults in the bedrock. The main target layer is located at only 20 m depth, but good surface conditions during acquisition and careful processing enabled a clear seismic image of this shallow layer to be obtained.The research presented in this thesis provides increased knowledge about subsurface structures in four geologically important areas. The unconventional processing methods used are recommended to future researchers working with data from crooked-line recording geometries in crystalline environments. The imaging of shallow structures at the quick-clay landslide site shows that the 3D reflection seismic method can be used as a complement to other geophysical measurements for shallow landslide site investigations.
  •  
5.
  • Maries, Georgiana (author)
  • Seismic investigations and physical property studies of natural resources in Finland and Sweden : Efficient exploration of groundwater and mineral resources
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Natural resources, such as mineral deposits and groundwater in particular, are crucial for our society, as the world prepares itself for a smooth transition towards green technologies and decarbonization. Apart from extraction and use, innovative mineral exploration solutions are needed to complete the full value chain and to achieve the sustainable development goals.  The application of seismic methods for both near-surface environmental and deep mineral exploration investigations is known, but high costs are associated with data acquisition and processing. In order to illustrate the potential of the seismic methods for efficient exploration of groundwater and mineral resources, cost-effective seismic surveys were acquired within two locations in Finland and Sweden, for aquifer delineation and imaging of iron-oxide mineralization in a hardrock environment, respectively. Physical properties, obtained from geophysical downhole logging and laboratory measurements, were analyzed for a complete characterization of the mineralization and its host rocks. 3D ray-tracing and 2D finite-difference forward modeling were carried out for better assessing the seismic response of the mineralization.The effectiveness of these seismic surveys was revealed by the quality seismic data acquired using a low-cost, easily operated seismic source and different sensors, including a broadband seismic landstreamer. In particular, the seismic source provided adequate penetration in two different and challenging environments, namely soft glacial sediments at Virttaankangas, southwest Finland, and swampy glacial cover at Blötberget, south central Sweden. The large-scale units of the Virttaankangas aquifer were successfully delineated and integrated with the hydrogeological units of the groundwater flow model. The mineralization at Blötberget was interpreted to further extend 300-400 m downdip, below the currently known depth from borehole observations. 3D processing of the 2D seismic profiles revealed a lateral extent of least 300 m, providing encouraging results for improved assessments of the mineral resources. The reflection pattern validated through forward modeling, suggested a possible new mineralized horizon below the known deposits. Physical property studies helped characterize the mineralization and its host rocks in terms of seismic attenuation and rock quality. Fracture zones detected through sonic full-waveform logging were associated with high seismic attenuation, suggesting low mechanical competence of the mineralized rocks despite good rock quality designation, providing thus important information for mine planning and exploration.   The studies presented in this thesis illustrate the potential of seismic methods and physical property studies for efficient natural resources exploration in crystalline rocks and in overlying glacial sediments.
  •  
6.
  • Muhamad, Harbe (author)
  • Geophysical studies in the western part of the Siljan Ring Impact Crater
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis utilizes several geophysical methods to study the Siljan Ring impact structure, focusing on the western part of the structure. This thesis, and the three papers upon which it is based, reports on attempts to delineate the Paleozoic rocks at depth within the annular ring graben and characterize their structure. In addition, the nature of the basement, which underlies these sedimentary rocks is investigated.Papers I and III focus on analysis of the down-hole logging and borehole core data. As well as the acquisition, processing and interpretation of 2D high-resolution reflection seismic data from the Mora area. The borehole log responses were compared with the core lithology from the Mora 001 borehole and information from two other cores (Mora VM 2 and Mora MV 3) in order to interpret the logs. The logs reveal significant changes in the lithology between boreholes, indicating a very high level of structural complexity, which is attributed to impact tectonics. In addition, the log data revealed a high sonic velocity contrast between the Silurian and Ordovician successions and a higher apparent temperature gradient than in the northern part of the structure. The interpretation of the high-resolution 2D seismic data suggest that the Mora area has been significantly affected by the impact. Several potential faults were identified in the area and interpreted to be post depositional and related to the impact. In paper II, a 2D seismic profile from the Orsa area (12 km) located in the northwestern part of the Siljan Ring was re-processed. To compliment this seismic line, first break traveltime tomography results, vintage seismic OPAB profiles, new and pre-existing gravity data, aeromagnetic data and the bedrock geological map were used to present a geological model along the Orsa profile. Reprocessing of the seismic data resulted in improved stacked and migrated sections and better imaging of the top of the crystalline basement than the original processing. Integrated interpretation of the seismic profiles suggests that the area has been significantly affected by faulting and that the depth to the basement varies greatly along the different profiles.
  •  
7.
  • Sharifi Brojerdi, Fatemeh (author)
  • Analysis of Seismic Data Acquired at the Forsmark Site for Storage of Spent Nuclear Fuel, Central Sweden
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • The Forsmark area, the main study area in this thesis, is located about 140 km north of Stockholm, central Sweden. It belongs to the Paleoproterozoic Svecokarelian orogen and contains several major ductile and brittle deformation zones including the Forsmark, Eckarfjärden and Singö zones. The bedrock between these zones, in general is less deformed and considered suitable for a nuclear waste repository. While several site investigations have already been carried out in the area, this thesis focuses primarily on (i) re-processing some of the existing reflection seismic lines to improve imaging of deeper structures, (ii) acquiring and processing high-resolution reflection and refraction data for better characterization of the near surface geology for the planning of a new access ramp, (iii) studying possible seismic anisotropy from active sources recorded onto sparse three-component receivers and multi-offset-azimuth vertical seismic profiling data (VSP). Reflection seismic surveys are an important component of these investigations. The re-processing helped in improving the deeper parts (1-5 km) of the seismic images and allowing three major deeper reflections to be better characterized, one of which is sub-horizontal while the other two are dipping moderately. These reflections were attributed to originate from either dolerite sills or brittle fault systems. First break traveltime tomography allowed delineating an undulating bedrock-surface topography, which is typical in the Forsmark area. Shallow reflections imaged in 3D, thanks to the acquisition design were compared with existing borehole data and explained by fractured or weak zones in the bedrock. The analysis of seismic anisotropy indicates the presence of shear-wave splitting due to transverse isotropy with a vertical symmetry axis in the uppermost hundreds of meters of crust. Open fractures and joints were interpreted to be responsible for the large delays observed between the transverse and radial components of the shear-wave arrivals, both on surface and VSP data.
  •  
8.
  • Sopher, Daniel (author)
  • Characterization of the structure, stratigraphy and CO2 storage potential of the Swedish sector of the Baltic and Hanö Bay basins using seismic reflection methods
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • An extensive multi-channel seismic dataset acquired between 1970 and 1990 by Oljeprospektering AB (OPAB) has recently been made available by the Geological Survey of Sweden (SGU). This thesis summarizes four papers, which utilize this largely unpublished dataset to improve our understanding of the geology and CO2 storage capacity of the Baltic and Hanö Bay basins in southern Sweden.A range of new processing workflows were developed, which typically provide an improvement in the final stacked seismic image, when compared to the result obtained with the original processing. A method was developed to convert scanned images of seismic sections into SEGY files, which allows large amounts of the OPAB dataset to be imported and interpreted using modern software. A new method for joint imaging of multiples and primaries was developed, which is shown to provide an improvement in signal to noise for some of the seismic lines within the OPAB dataset. For the first time, five interpreted regional seismic profiles detailing the entire sedimentary sequence within these basins, are presented. Depth structure maps detailing the Outer Hanö Bay area and the deeper parts of the Baltic Basin were also generated. Although the overall structure and stratigraphy of the basins inferred from the reprocessed OPAB dataset are consistent with previous studies, some new observations have been made, which improve the understanding of the tectonic history of these basins and provide insight into how the depositional environments have changed throughout time. The effective CO2 storage potential within structural and stratigraphic traps is assessed for the Cambrian Viklau, När and Faludden sandstone reservoirs. A probabilistic methodology is utilized, which allows a robust assessment of the storage capacity as well as the associated uncertainty. The most favourable storage option in the Swedish sector of the Baltic Basin is assessed to be the Faludden stratigraphic trap, which is estimated to have a mid case (P50) storage capacity of 3390 Mt in the deeper part of the basin, where CO2 can be stored in a supercritical phase.
  •  
9.
  • Ahmadi, Omid, 1980- (author)
  • Application of the Seismic Reflection Method in Mineral Exploration and Crustal Imaging : Contributions to Hardrock Seismic Imaging
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • The seismic reflection method has been used extensively in mineral exploration and for imaging crustal structures within hardrock environments. In this research the seismic reflection method has been used and studied to address problems associated with hardrock settings. Papers I and II, address delineating and imaging a sulfide ore body and its surrounding rocks and structures in Garpenberg, central Sweden, at an active mine. 3D ray-tracing and finite-difference modeling were performed and the results suggest that although the detection of the ore body by the seismic reflection method is possible in the area, the presence of backfilled stopes in the mine makes seismic imaging of it difficult. In paper III the deeper structures of the Pärvie fault system in northern Sweden were revealed down to about 8 km through 2D seismic reflection profiling. The resulting images were interpreted using microearthquake data as a constraint. Based on the interpretation, some locations were suggested for future scientific deep drilling into the fault system. In paper IV, the seismic signature of complex geological structures of the Cue-Weld Range area in Western Australia was studied using a portion of a deep 2D seismic reflection profile. The pronounced reflections on the seismic images were correlated to their corresponding rock units on an available surface geological map of the study area. 3D constant velocity ray-tracing was performed to constrain the interpretation. Furthermore, the proposed structural model was tested using a 2D acoustic finite-difference seismic modeling method. Based on this study, a new 3D structural model was proposed for the subsurface of the area. These studies have investigated the capability of the seismic reflection method for imaging crustal structures within challenging hardrock and complex geological settings and show some its potential, but also its limitations.
  •  
10.
  •  
11.
  • Brodic, Bojan, 1988- (author)
  • Three-component digital-based seismic landstreamer : Methodologies for infrastructure planning applications
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • To support urban infrastructure planning projects, along with various other near-surface applications, a multicomponent landstreamer was developed. The landstreamer was built with broadband (0-800 Hz), three-component (3C) micro-electro-mechanical system (MEMS) sensors. The digital nature of the MEMS sensors makes the developed landstreamer insensitive to electric/electromagnetic noise.The landstreamer’s design and its seismic imaging capabilities, along with the MEMS technical specifications, were evaluated in several studies. When comparing signals recorded with the streamer with planted MEMS sensors, no negative effects of the design were noted. Compared to different geophones tested, the streamer produced higher quality and broader signal bandwidth data. Additionally, a seismic study conducted in a tunnel demonstrated its electric/electromagnetic noise insensitivity. The streamer combined with wireless seismic recorders was used to survey logistically challenging areas for improved imaging and characterizations and avoid interference with traffic.For example, at the Stockholm Bypass site, the landstreamer recorded data were used for traveltime tomography with results showing a well delineated bedrock level and potential low-velocity zones matching with inferred poor-quality-class rocks. The seismic response of fractures and their extent between a tunnel and the surface was studied at the Äspö Hard Rock Laboratory site. The velocity model obtained using the traveltime tomography approach showed known well-characterized fracture systems and potential additional formerly unknown ones. Additionally, compressional- and shear-wave velocities, seismic quality factors, Vp/Vs and dynamic Poisson’s ratios of the known fracture zones were obtained. Fractures and/or weakness zones in the bedrock were imaged using refraction and reflection imaging methods at a site contaminated with a cancerogenic pollutant in southwest Sweden, illustrating the potential of the streamer for environmental-related applications. In southern Finland, the landstreamer was used for SH-wave reflection seismic imaging from a vertically oriented impact source with the results showing a well-delineated bedrock level and weak reflections correlating well with geology. At the same site, its potential for multichannel analysis of surface waves (MASW) was demonstrated. The surface-wave obtained shear-wave velocities match well with the borehole based stratigraphy of the site and are complementary to the SH-wave reflectivity and previous investigations at the site.Studies conducted in this thesis demonstrate the landstreamer’s potential for various near-surface applications and show the benefits and need for 3C seismic data recording. 
  •  
12.
  • Buntin, Sebastian, 1990- (author)
  • Seismic structure of the central Svecofennian lithosphere
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • Lithospheric structures in the Fennoscandian Shield in Sweden have been studied by a number of large-scale wide-angle seismic reflection/refraction (WARR) and normal-incidence reflection profiles since the 1960s. Among these were the over 2000 km long Fennoscandian Long Range (FENNOLORA) project in 1979 and the Baltic and Bothnian Echoes from the Lithosphere (BABEL) in 1989, which provided valuable images of the subsurface down to over 60 km depth including the Moho. Additionally, the 550 km long WARR profile, UPPLAND, was acquired in 2017, transecting across the Uppland and Ljusdal Batholiths from south to north. Due to the computational progress in the last 25 years, improved seismic images and velocity models could be obtained by reprocessing the recovered BABEL data set. The main finding of the reprocessed BABEL profiles is the presence of large-scale saucer-shaped intrusions of around 100 km diameter connected to an up-domed lower crust and sub-Moho reflectors. These interpreted offshore saucer-shaped intrusions together with those observed onshore suggest a nested interconnected emplacement model, implying that the deeper saucer-shaped intrusions fed the shallower ones.Ray tracing forward modelling of the UPPLAND data revealed a unique velocity structure below the Uppland Batholith with high velocities in both the lowermost crust (~7.3 km/s) and uppermost mantle (~8.5 km/s). Such a velocity structure has not been observed anywhere else to this extent and robustness. It is interpreted to represent the presence of eclogitized material in the lowermost crust and complicates further the difference between the seismological and petrological crust-mantle boundary.The recovery and reprocessing of the FENNOLRA data set provided new insights into the lower crust and upper mantle. Consistent with the results of the UPPLAND velocity profile where collocated, it also reveals a high-velocity lowermost crustal structure in the Fennoscandian Shield and a heterogenous upper mantle with different average velocities (8.2-8.5 km/s) across various geological terranes. Additionally, a zone with lower velocities (8.0-8.2 km/s) is detected in 70-90 km depth in the mantle.Overall, the studies in this thesis demonstrate the potential of reprocessing legacy data, but also of acquiring new high-resolution deep seismic sounding profiles for the investigation of the crust and upper mantle structures. Aside from recovering fully digital reusable BABEL and FENNOLORA data, new and refined geophysical and geological models can be tested and provide key information for cratonic setting studies.
  •  
13.
  • Ivanova, Alexandra, 1970- (author)
  • Geological Structure and Time-Lapse Studies of CO2 Injection at the Ketzin Pilot Site, Germany
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • 3D seismic time-lapse surveys (“4D seismics”) are an essential tool for large scale reservoir characterization. The target reservoir of the Ketzin pilot project for CO2 storage is a saline aquifer of the heterogeneous Stuttgart Formation (Upper Triassic) in the Northeast German Basin. The focus of this project is on testing and further developing monitoring CO2 storage technologies. For time-lapse seismic monitoring, three seismic surface sources were characterized with respect to S/N (signal to noise) ratios, signal penetration, and frequency content by analysis of raw shot gathers and stacked sections along two lines at the Ketzin site. Differences in reflectivity between these 2D lines reflect the differences in the nature of the sources tested and how they influence the signal bandwidth (resolution) and signal energy. All three sources image the target horizon. The weight drop source was recommended as the primary source for 3D surveys based mainly on logistics and cost. Results of processing, including equalization of a 4D (3D time-lapse) data set from the Ketzin site and cross-correlation, indicate that the injected CO2 can be monitored. The highly irregular amplitude response on the time-lapse data can be attributed to the reservoir heterogeneity. Time-lapse seismic processing, petrophysical measurements on core samples and geophysical logging of CO2 saturation levels allow for an estimate of the total amount of CO2 visible in the seismic data to be made. In spite of some uncertainty, the close agreement between the injected and observed amount is encouraging for quantitative monitoring of a CO2 storage site using seismic methods. By integrating seismic modeling and multiphase fluid flow simulations, the impact of the reservoir temperature on the 4D seismic data from Ketzin was estimated. The modeled time-lapse seismic differences for two temperature scenarios present in the reservoir are minor regarding the qualitative analysis. However, the influence of temperature on the volumetric estimation of the CO2 using the 4D seismic data is significant. Future issues to be considered include expanding the temperature range (34-38°C in this study) to be investigated and the resulting effects on the seismic response, as well as the role of the reservoir heterogeneity. In addition, it would be important to investigate the impact of temperature on the CO2 storage at other sites with favorable P-T conditions in the reservoir. Further seismic modeling using results of petrophysical experiments for estimating the effect of the CO2 injection at the Ketzin site on the AVA/AVO response on time lapse seismic data was performed. Two effects were considered: the CO2-saturation- and the pore-pressure-related effects. The results indicate that it is worth investigating if it is possible to discriminate between these effects on future 3D repeat surveys at the Ketzin site.
  •  
14.
  • Kashubin, Artem, 1978- (author)
  • Seismic Studies of Paleozoic Orogens in SW Iberia and the Middle Urals
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Controlled source seismic methods were employed in this study to investigate the reflectivity and velocity structure of two Hercynian orogens – the Uralides and Variscides. Conventional common depth point (CDP) sections from five reflection seismic campaigns and a velocity model obtained from tomographic inversion of wide-angle observations were the main datasets studied from the Middle Urals. These were complemented with the near-vertical seismic sections and velocity models from the Southern Urals. In the Variscides, conventional CDP processing, along with non-standard processing and synthetic data modeling, were used to obtain and interpret reflection seismic images of the Southwestern Iberian crust.Although, the Uralian and Variscan belts were formed in Late Paleozoic time in apparently similar plate collisional settings, a comparison of the seismic results show that the crust of these two orogens looks quite different at depth. In the Urals, collision of Baltica with Asian terranes (Siberia and Kazakhstan) resulted in a highly diversely reflective crust of 40-45 km thickness. The axial zone of the orogen is characterized by a high velocity crustal root of diffuse reflectivity and an imbricated Moho, with a crustal thickness reaching 55-60 km. The Moho discontinuity is marked by a sharp decrease in reflectivity and is well imaged in most locations except in the crustal root zone. The Southwestern Iberian Variscan crust is 30-35 km thick and is characterized by a highly reflective two-layered structure that resulted from collision of Luarussia and Gondwana, including terranes in-between them. This type of crustal structure is very similar to those imaged in other regions of the Variscan belt in the Europe. The Moho discontinuity is flat and appears to be the deepest reflection. This thesis compares the deep structure of the two orogens and interprets mountain building processes related to late Paleozoic plate movements.
  •  
15.
  • Levendal, Tegan (author)
  • A geophysical investigation of carbonate build-ups in the Baltic Basin using reflection seismic and well data
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • During the Late Ordovician, the region around Gotland was part of a shallow epicratonic basin in the southern subtropics. Low latitudes, relatively warm sea temperatures and the presence of a shallow marine environment promoted algae to flourish and diverse carbonate build-ups such as carbonate mounds and reefs developed on the southern margin of Baltica. Locations where these build-ups can be found today include the Palaeozoic sequence beneath the island of Gotland, Sweden and surrounding areas offshore Gotland. Ordovician mud mounds on Gotland were exploited for their hydrocarbon potential during the 1970’s and 1980’s, with large amounts of seismic and well data being acquired by the oil company Oljeprospecketering AB (OPAB). In recent years this largely unpublished dataset has become available for research purposes. Furthermore, the islands of Gotland and Öland have been the target of helicopter-borne electromagnetic investigations conducted by the Geological Survey of Sweden (SGU) (SkyTEM and VLF). Moreover, new seismic reflection data acquired on a research vessel during 2017 complement the OPAB data over certain areas. In published scientific literature, carbonate mounds and reefs have mainly been identified based on outcrops, cuttings samples, cores and wireline logs. Therefore, the extensive seismic and well dataset used in this study provides an opportunity to showcase how large amounts of vintage data can be utilised to generate regional scale attribute maps which can describe geological systems.In this thesis, the combination of historic seismic and well data, helicopter-borne resistivity data and newly acquired marine seismic data is utilised firstly, to investigate the geometry, distribution and reservoir characteristics of carbonate build-up structures in the Gotland area. Secondly, we generate detailed depth and thickness maps of the Ordovician formation in the subsurface of Gotland based on the seismic data. Thirdly, a detailed interpretation of a 3D seismic dataset acquired over a mound structure on Gotland and a scoping assessment of the potential to utilize these mud mounds for subsurface compressed air energy storage (CAES) is performed. Finally, an automating refraction velocity analysis in the marine seismic data is used to generate a basement velocity map over a large portion of the Swedish sector of the Baltic Sea. 
  •  
16.
  • Yang, Can, 1982- (author)
  • Time-lapse Analysis of Borehole and Surface Seismic Data, and Reservoir Characterization of the Ketzin CO2 Storage Site, Germany
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • The CO2SINK (and CO2MAN) project is the first onshore CO2 storage project in Europe. The research site is located near the town of Ketzin, close to Potsdam in Germany. Injection started in June 2008, with a planned injection target of 100,000 tonnes of CO2. In February 2011, around 45, 000 tons of CO2 had been injected into the saline aquifer at an approximate depth of 630 m. This thesis focuses on time-lapse analysis of borehole seismic data, surface seismic data and reservoir characterization at the Ketzin site. Baseline Moving Source Profiling (MSP) data were acquired in the borehole Ketzin 202/2007 (OW2), along seven lines in 2007. The zero-offset Vertical Seismic Profile (VSP) data were acquired in the same borehole. The main objective of the VSP and MSP survey was to generate high-resolution seismic images around the borehole. After modeling and data processing, the sandy layers within the Stuttgart Formation can potentially be imaged in the VSP and MSP data whereas reflections from these layers are not as clearly observed in the 3D surface seismic data. 2D and pseudo-3D time-lapse seismic surveys were conducted at the Ketzin site. Interpretation of 2D baseline and repeat stacks shows that no CO2 leakage related time lapse signature is observable where the 2D lines allow monitoring of the reservoir. This is consistent with the time-lapse results of the 3D surveys showing an increase in reflection amplitude just centered around the injection well. The results from the pseudo-3D surveys are also consistent with the 3D seismic time-lapse studies and show that the sparse pseudo-3D geometry can be used to qualitatively map the CO2 in the reservoir with significantly less effect than the full 3D surveying. The 2nd pseudo-3D repeat survey indicates preferential migration of the CO2 to the west. There are no indications of migration into the caprock on either of the repeat surveys. Amplitude Versus Offset (AVO) analysis was performed on both 2D and 3D repeat surveys. A Class 3 AVO anomaly is clearly observed on the 3D repeat data and matches the synthetic modeling well. No AVO anomaly was observed on the 2D repeat data, which was anticipated, but the result shows signs of a pressure response at the reservoir level in the data. Reflection coefficients were calculated using surface seismic data (3D and pseudo-3D) at the site. Pre-injection calculations agree well with calculations from logging data. Post-injection calculations are in general agreement with the seismic modeling, but generally show higher amplitudes than those expected. The full 3D data show a better image of the reflection coefficients before and after injection than the pseudo-3D data and can potentially be used to make quantitative calculations of CO2 volumes. The pseudo-3D data only provide qualitative information.
  •  
17.
  • Zhang, Fengjiao, 1981- (author)
  • Quantifying the Seismic Response of Underground Structures via Seismic Full Waveform Inversion : Experiences from Case Studies and Synthetic Benchmarks
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • Seismic full waveform inversion (waveform tomography) is a method to reconstruct the underground velocity field in high resolution using seismic data. The method was first introduced during the 1980’s and became computationally feasible during the late 1990’s when the method was implemented in the frequency domain. This work presents three case studies and one synthetic benchmark of full waveform inversion applications. Two of the case studies are focused on time-lapse cross-well and 2D reflection seismic data sets acquired at the Ketzin CO2 geological storage site. These studies are parts of the CO2SINK and CO2MAN projects. The results show that waveform tomography is more effective than traveltime tomography for the CO2 injection monitoring at the Ketzin site for the cross-well geometry. For the surface data sets we find it is difficult to recover the true value of the velocity anomaly due to the injection using the waveform inversion method, but it is possible to qualitatively locate the distribution of the injected CO2. The results agree well with expectations based upon conventional 2D CDP processing methods and more extensive 3D CDP processing methods in the area. A further investigation was done to study the feasibility and efficiency of seismic full waveform inversion for time-lapse monitoring of onshore CO2 geological storage sites using a reflection seismic geometry with synthetic data sets. The results show that waveform inversion may be a good complement to standard CDP processing when monitoring CO2 injection. The choice of method and strategy for waveform inversion is quite dependent on the goals of the time-lapse monitoring of the CO2 injection. The last case study is an application of the full waveform inversion method to two crooked profiles at the Forsmark site in eastern central Sweden. The main goal of this study was to help determine if the observed reflections are mainly due to fluid filled fracture zones or mafic sills. One main difficulty here is that the profiles have a crooked line geometry which corresponds to 3D seismic geometry, but a 2D based inversion method is being used. This is partly handled by a 3D to 2D coordinate projection method from traveltime inversion. The results show that these reflections are primarily due to zones of lower velocity, consistent with them being generated at water filled fracture zones.
  •  
18.
  • Beckel, Ruth A. (author)
  • Active and passive seismic methods for investigating the glacially-triggered Burträsk fault
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • Glacially-triggered faults are of high scientific interest since their formation was likely accompanied by major earthquakes and they are still a centre of seismicity in northern Fennoscandia, today. Imaging their deeper structure mainly relies on reflection seismics since the method generally has the best resolving power at depth of all geophysical methods. This thesis uses data acquired at the glacially-triggered Burträsk fault to advance active and passive seismic imaging methods and improve the understanding of the area. Reprocessing of a vintage, crooked-line reflection dataset using a newly developed module for a local cross-dip correction improved the quality of the reflection image significantly and provided important 3D information for the interpretation of the fault and its surroundings. A fault segment to the southwest of the profile was imaged with a dip of approximately 50° but the segment intersecting the profile was not imaged, likely due to insufficient shot coverage close to the fault. Since the Burträsk area is seismically the most active area in Sweden, passive imaging using a dataset of local microearthquakes was attempted. As a first step, the earthquakes were re-located using a stacking-based location method. In spite of the poor azimuthal coverage of the array, the method yielded surprisingly good location results within 30–40 km from the array. The most important factors for success proved to be combined P- and S-wave location with down-weighted S-wave signals, and the use of a polarity-sensitive characteristic function. The distribution of the hypocentres confirmed that the trace of the Burträsk fault is the currently active fault plane. Disappointingly, passive seismic processing using reflection seismic interferometry (RSI) did not image the known reflections. To improve the planning of future studies, different aspects of imaging dipping faults with RSI were investigated using synthetic data. The results showed that reconstructing steeply dipping reflections requires sources in the hanging-wall and that the interpretation of the RSI sections is complicated due to strong artefacts caused by P-S converted arrivals. Thus, passive imaging needs careful planning and a good knowledge of the source positions for distinguishing between artefacts and subsurface structures. This knowledge can be obtained using the stacking-based location method. 
  •  
19.
  • Bergman, Björn, 1973- (author)
  • High-Resolution Seismics Methods Applied to Till Covered Hard Rock Environments
  • 2005
  • Doctoral thesis (other academic/artistic)abstract
    • Reflection seismic and seismic tomography methods can be used to image the upper kilometer of hard bedrock and the loose unconsolidated sediments covering it. Developments of these two methods and their application, as well as identifying issues concerning their usage, are the main focus of the thesis. Data used for this development were acquired at three different sites in Sweden, in Forsmark 140 km north of Stockholm, in the Oskarshamn area in southern Sweden, and in the northern part of the Siljan Ring impact crater area.The reflection seismic data were acquired with long source-receiver offsets relative to some of the targeted depths to be imaged. In the initial processing standard steps were applied, but the uppermost part of the sections were not always clear. The longer offsets imply that pre-stack migration is necessary in order to image the uppermost bedrock as clearly as possible. Careful choice of filters and velocity functions improve the pre-stack migrated image, allowing better correlation with near-surface geological information.The seismic tomography method has been enhanced to calculate, simultaneously with the velocity inversion, optimal corrections to the picked first break travel times in order to compensate for the delays due to the seismic waves passing through the loose sediments covering the bedrock.The reflection seismic processing used in this thesis has produced high-quality images of the upper kilometers, and in one example from the Forsmark site, the image of the uppermost 250 meters of the bedrock has been improved. The three-dimensional orientation of reflections has been determined at the Oskarshamn site. Correlation with borehole data shows that many of these reflections originate from fracture zones.The developed seismic tomography method produces high-detail velocity models for the site in the Siljan impact area and for the Forsmark site. In Forsmark, detailed estimates of the bedrock topography were calculated with the use of the developed tomography method.
  •  
20.
  • Hedin, Peter, 1981- (author)
  • Geophysical studies of the upper crust of the central Swedish Caledonides in relation to the COSC scientific drilling project
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • The Collisional Orogeny in the Scandinavian Caledonides (COSC) project aims to provide a deeper understanding of mountain belt dynamics through scientific deep drilling in the central parts of the mountain belt of western Sweden. The main targets include a subduction related allochthon, the basal orogenic detachment and the underlying partially subducted Precambrian basement. Research covered by this thesis, focusing primarily on reflection seismic data, was done within the framework of the COSC project.The 55 km long composite COSC Seismic Profile (CSP) images the upper crust in high resolution and established the basis for the selection of the optimum location for the two 2.5 km deep COSC boreholes. Together with potential field and magnetotelluric data, these profiles allowed the construction of a constrained regional interpretation of the major tectonic units. Non-conventional pseudo 3D processing techniques were applied to the 2D data prior to the drilling of the first borehole, COSC-1, to provide predictions about the 3D geometry of subsurface structures and potential zones of interest for the sampling programs.COSC-1 was drilled in 2014 and reached the targeted depth with nearly complete core recovery. A continuous geological section and a wealth of information from on-site and off-site scientific investigations were obtained. A major post-drilling seismic survey was conducted in and around the borehole and included a 3D reflection seismic experiment. The structurally and lithologically complex Lower Seve Nappe proved difficult to image in detail using standard processing techniques, but its basal mylonite zone and underlying structures are well resolved. The 3D data, from the surface down to the total drilled depth, show good correlation with the initial mapping of the COSC-1 core as well as with preliminary results from on-core and downhole logging.  Good correlation is also observed between the 2D and 3D reflection seismic datasets. These will provide a strong link between the two boreholes and a means to extrapolate the results from the cores and boreholes into the surrounding rock. Ultimately, they will contribute to the deeper understanding of the tectonic evolution of the region, the Scandinavian Caledonides and the formation of major orogens. 
  •  
21.
  •  
22.
  • Karabetoglu, Sevan, et al. (author)
  • Effect of layered geological structures on borehole heat transfer
  • 2021
  • In: Geothermics. - : Elsevier BV. - 0375-6505 .- 1879-3576. ; 91
  • Journal article (peer-reviewed)abstract
    • Borehole heat exchangers, especially deep ones, are usually drilled through different geological layers havingvarying properties. Homogeneous and layered models can be used for borehole performance predictions. Thehomogeneous model considers all layers as a single layer having effective properties while the layered modelconsiders all layers separately and gives better accuracy, although it is more complicated and time consuming tocalculate. In this study, by considering real geological structures, thermal performance predictions of a deepborehole are made using both homogeneous and layered models and the results are compared to examine howpredictions differ from each other depending on the statistical characteristics of geological structures. Ananalytical expression is derived for the relation between statistical characteristics and deviations from the predictionsof the homogeneous model. The magnitudes of deviations are very small and essentially depend on thevariance of the difference for the thermal properties of the layers and a time decaying function. The results helpto understand how horizontally layered geological structures influence borehole performance and when we needa layered model.
  •  
23.
  • Malehmir, Alireza, 1977- (author)
  • 3D Geophysical and Geological Modeling in the Skellefte District: Implications for Targeting Ore Deposits
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • With the advancements in acquisition and processing of seismic reflection data recorded over crystalline rocks, building three-dimensional geologic models becomes increasingly favorable. Because of little available petrophysical data, interpretations of seismic reflection data in hardrock terrains are often speculative. Potential field data modeling are sometimes performed in order to reduce the ambiguity of seismic reflection interpretations. The Kristineberg mining area in the western part of the Paleoproterozoic Skellefte Ore District was chosen to construct a pilot three-dimensional geologic model in an attempt to understand the crustal architecture in the region and how the major mineral systems operated in this architecture. To contribute to this aim, two parallel seismic reflection profiles were acquired in 2003 and processed to 20 sec with special attention to the top 4 sec of data. Several reflections were imaged and interpreted by the aid of reflector modeling, borehole data, 2.5D and 3D potential field modeling, and geological observations. Interpretations are informative at the crustal scale and help to construct a three-dimensional geologic model of the Kristineberg mining area. The three-dimensional geologic model covers an area of 30×30 km2 down to a depth of 12 km. The integrations help to interpret a structural basement to the Skellefte volcanic rocks, possibly with Bothnian Basin metasedimentary affinity. The contact is a shear-zone that separates the two units, generating large fold structures, which can be observed in the region. The interpretations help to divide the Revsund granitic rocks into two major groups based on their present shape and thickness. A large gravity low in the south is best represented by the intrusion of thick dome of Revsund granite. In the north, the low-gravity corresponds to the intrusion of sheet-like Revsund granites. In general, the structure associated with the Skellefte volcanics and the overlying metasedimentary rocks are two thrusts exposing the Skellefte volcanic rocks in the cores of hanging wall anticlinal structures. Lack of coherent reflectivity in the seismic reflection data may be due to complex faulting and folding systems observed in the Skellefte volcanics. Ultramafic sills within the metasedimentary rocks are interpreted to extend down to depths of about 5-6 km. The interpretations are helpful for targeting new VHMS deposits and areas with gold potential. For VHMS deposits, these are situated in the southern limb of a local synformal structure south of the Kristineberg mine, on the contact between the Revsund granite and the Skellefte volcanic rocks. A combination of metasedimentary and mafic-ultramafic rocks are highly gold prospective in the west, similar to observations elsewhere in the region. There are still questions that remain unanswered and need more work. New data in the study area will help to answer questions related to e.g., an enigmatic diffraction seismic signal in Profile 5 and the structural relationship between the Skellefte volcanic rocks and the Malå volcanics. Although the derived 3D geologic model is preliminary and constructed at the crustal scale, it provides useful information to better understand the tectonic evolution of the Kristineberg mining area.
  •  
24.
  • Salas Romero, Silvia (author)
  • Multidisciplinary Near-Surface Investigation of a Quick-Clay Landslide Prone Area in Southwest Sweden
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Quick-clay landslides are considered one of the most important geohazards in Sweden, Norway, and Canada. The deposits involved are glacial and postglacial clays and silty clays, which are very sensitive to increased stress that may collapse their structure and cause liquefaction.A multidisciplinary approach was adopted in this study of quick clays in an area of southwest Sweden that is prone to landslides. It was mainly based on geophysical methods, but was complemented and validated with geotechnical, geological, and hydrological data. Downhole geophysics, land and river reflection seismics, radio magnetotellurics, P-wave refraction tomography, magnetics, and multichannel analysis of surface waves comprised the main geophysical methods used in this research. Laboratory measurements of core samples, such as grain size analysis, mineral magnetic properties, fossil content, X-ray fluorescence, cation exchange capacity, X-ray powder diffraction, electrical conductivity, and pH were also taken. Hydrological modelling was used to obtain information on the properties of groundwater within a coarse-grained layer, given the importance of this information in the formation of quick clays.The evaluation of the physico-chemical properties of the coarse-grained layer revealed high values of magnetic susceptibility, probably as a result of fluvial sorting, which tends to accumulate denser minerals such as magnetite. Potential quick clays were visually observed above this layer, and their presence was also confirmed by geotechnical data acquired in previous studies. Marine fossils identified within the coarse-grained layer confirmed the glaciomarine origin of the clays. Geophysical results revealed the presence of large-scale structures, an undulating fractured bedrock and a coarse-grained layer sandwiched between clay deposits, with leached sediments on top and unleached sediments below. This layer, important for the development of quick clays in the area, was 3D modelled in a regional context. Magnetic data also revealed that the coarse-grained layer together with quick clays, have the potential to act as a sliding prone layer. Multichannel analysis of surface waves helped to geotechnically characterize the area. Although the results could not reach the deeper layers, it did yield information about the shallower layers of clay, silt and sand. The VS30 values indicated the presence of soft soils, as well as soft clays/silts with high plasticity index and high water content.This PhD is expected to improve the current knowledge of quick-clay landslides and how they are preconditioned. Climate change will probably affect the study area in the near future, most likely increasing landslide risk, therefore, research should continue and advance to new levels. Application of other geophysical methods such as borehole or geophysical monitoring, and induced polarization, could provide more information about the formation of quick clays and associated landslides.
  •  
25.
  • Yordkayhun, Sawasdee, 1975- (author)
  • 2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow Subsurface
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO2) geological storage site at Ketzin, Germany (the CO2SINK project). Conventional seismic methods that focused on investigating the CO2 storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis.Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition.For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 25
Type of publication
doctoral thesis (22)
conference paper (1)
journal article (1)
licentiate thesis (1)
Type of content
other academic/artistic (23)
peer-reviewed (2)
Author/Editor
Juhlin, Christopher, ... (14)
Juhlin, Christopher (4)
Malehmir, Alireza, A ... (4)
Juhlin, Christopher, ... (4)
Malehmir, Alireza, P ... (4)
Malehmir, Alireza, 1 ... (3)
show more...
Tryggvason, Ari (3)
Sisman, Altug, Visit ... (2)
Nielsen, Lars, Profe ... (2)
Carbonell, Ramon, Pr ... (2)
Pugin, André, Dr (2)
Ozturk, Z. Fatih (2)
kaslilar, ayse (2)
Almqvist, Bjarne, Re ... (2)
Karabetoglu, Sevan (2)
Nielsen, Lars, Assoc ... (2)
Juhlin, Christopher, ... (2)
Pedersen, Laust Börs ... (1)
Malehmir, Alireza (1)
Hedin, Peter, 1981- (1)
Ahmadi, Omid, 1980- (1)
Bellefleur, Gilles, ... (1)
Maries, Georgiana (1)
Sopher, Daniel (1)
Snowball, Ian (1)
Dehghannejad, Mahdie ... (1)
Beckel, Ruth A. (1)
Bergman, Björn, 1973 ... (1)
Brodic, Bojan, 1988- (1)
Brodic, Bojan (1)
Lundberg, Emil, 1977 ... (1)
Buntin, Sebastian, 1 ... (1)
Malinowski, Michał, ... (1)
Durrheim, Raymond, P ... (1)
Tryggvason, Ari, Ass ... (1)
Hurich, Charles, Ass ... (1)
Zhang, Fengjiao, 198 ... (1)
Malehmir, Alireza, S ... (1)
Hurich, Charles, Ass ... (1)
Huang, Fei, 1987- (1)
Chadwick, Andy, Prof ... (1)
Ivanova, Alexandra, ... (1)
Urosevic, Milovan, A ... (1)
Kashubin, Artem, 197 ... (1)
Kazemeini, Sayed Hes ... (1)
Fomel, Sergey, Assoc ... (1)
Urosevic, Milovan, A ... (1)
Juhlin, Christopher, ... (1)
Levendal, Tegan (1)
Milkereit, Bernd, Pr ... (1)
show less...
University
Uppsala University (25)
Language
English (25)
Research subject (UKÄ/SCB)
Natural sciences (24)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view