SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kodama K.) "

Search: WFRF:(Kodama K.)

  • Result 1-25 of 46
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2017
  • swepub:Mat__t
  •  
4.
  •  
5.
  • Namkoong, H, et al. (author)
  • DOCK2 is involved in the host genetics and biology of severe COVID-19
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 609:7928, s. 754-
  • Journal article (peer-reviewed)abstract
    • Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
  •  
6.
  •  
7.
  • Wang, QBS, et al. (author)
  • The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
  • 2022
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 4830-
  • Journal article (peer-reviewed)abstract
    • Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.
  •  
8.
  • Ahdida, C., et al. (author)
  • Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
  • 2019
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 14
  • Journal article (peer-reviewed)abstract
    • This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHIP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of O(10(6)). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution.
  •  
9.
  • Ahdida, C., et al. (author)
  • Sensitivity of the SHiP experiment to Heavy Neutral Leptons
  • 2019
  • In: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :4
  • Journal article (peer-reviewed)abstract
    • Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL's benchmark models and provide a way to calculate the SHiP's sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.
  •  
10.
  • Ahdida, C., et al. (author)
  • The experimental facility for the Search for Hidden Particles at the CERN SPS
  • 2019
  • In: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Journal article (peer-reviewed)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to O(10) GeV/c(2) in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background.
  •  
11.
  • Ahdida, C., et al. (author)
  • The magnet of the scattering and neutrino detector for the SHiP experiment at CERN
  • 2020
  • In: Journal of Instrumentation. - 1748-0221. ; 15:01
  • Journal article (peer-reviewed)abstract
    • The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.
  •  
12.
  • Ahdida, C., et al. (author)
  • Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target
  • 2020
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:3
  • Journal article (peer-reviewed)abstract
    • The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27 +/- 0.07)x1011protons on target was recorded. This amounts to approximatively 1% of a SHiP spill.
  •  
13.
  • Ahdida, C., et al. (author)
  • Sensitivity of the SHiP experiment to dark photons decaying to a pair of charged particles
  • 2021
  • In: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 81:5
  • Journal article (peer-reviewed)abstract
    • Dark photons are hypothetical massive vector particles that could mix with ordinary photons. The simplest theoretical model is fully characterised by only two parameters: the mass of the dark photon m(gamma)D and its mixing parameter with the photon, epsilon. The sensitivity of the SHiP detector is reviewed for dark photons in the mass range between 0.002 and 10 GeV. Different productionmechanisms are simulated, with the dark photons decaying to pairs of visible fermions, including both leptons and quarks. Exclusion contours are presented and compared with those of past experiments. The SHiP detector is expected to have a unique sensitivity for m. D ranging between 0.8 and 3.3(-0.5)(+0.2) GeV, and epsilon(2) ranging between 10(-11) and 10(-17).
  •  
14.
  • Ahdida, C., et al. (author)
  • Sensitivity of the SHiP experiment to light dark matter
  • 2021
  • In: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; :4
  • Journal article (peer-reviewed)abstract
    • Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with αD = 0.1 and mA′ = 3mχ, we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 · 1020 protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic.
  •  
15.
  • Ahdida, C., et al. (author)
  • The SHiP experiment at the proposed CERN SPS Beam Dump Facility
  • 2022
  • In: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 82:5
  • Journal article (peer-reviewed)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm { \,m}$$\end{document} long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\mathrm {GeV}$$\end{document} protons, the experiment aims at profiting from the 4x1019\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 10<^>{19}$$\end{document} protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {\,MeV\!/}c<^>2}$$\end{document} up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.
  •  
16.
  • Ahdida, C., et al. (author)
  • Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment
  • 2022
  • In: Journal of Instrumentation. - : IOP Publishing. - 1748-0221. ; 17:3
  • Journal article (peer-reviewed)abstract
    • In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved.
  •  
17.
  • Milstead, David A., et al. (author)
  • The active muon shield in the SHiP experiment
  • 2017
  • In: Journal of Instrumentation. - 1748-0221. ; 12
  • Journal article (peer-reviewed)abstract
    • The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model background level to less than 0.1 event after 2 x 10(20) protons on target. In the beam dump, around 10(11) muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muon-induced combinatorial background. A novel active muon shield is used to magnetically deflect the muons out of the acceptance of the spectrometer. This paper describes the basic principle of such a shield, its optimization and its performance.
  •  
18.
  • Fukui, A., et al. (author)
  • TOI-1749: an M dwarf with a Trio of Planets including a Near-resonant Pair
  • 2021
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 162:4
  • Journal article (peer-reviewed)abstract
    • We report the discovery of one super-Earth- (TOI-1749b) and two sub-Neptune-sized planets (TOI-1749c and TOI-1749d) transiting an early M dwarf at a distance of 100 pc, which were first identified as planetary candidates using data from the TESS photometric survey. We have followed up this system from the ground by means of multiband transit photometry, adaptive optics imaging, and low-resolution spectroscopy, from which we have validated the planetary nature of the candidates. We find that TOI-1749b, c, and d have orbital periods of 2.39, 4.49, and 9.05 days, and radii of 1.4, 2.1, and 2.5 R (circle plus), respectively. We also place 95% confidence upper limits on the masses of 57, 14, and 15 M (circle plus) for TOI-1749b, c, and d, respectively, from transit timing variations. The periods, sizes, and tentative masses of these planets are in line with a scenario in which all three planets initially had a hydrogen envelope on top of a rocky core, and only the envelope of the innermost planet has been stripped away by photoevaporation and/or core-powered mass-loss mechanisms. These planets are similar to other planetary trios found around M dwarfs, such as TOI-175b,c,d and TOI-270b,c,d, in the sense that the outer pair has a period ratio within 1% of 2. Such a characteristic orbital configuration, in which an additional planet is located interior to a near 2:1 period-ratio pair, is relatively rare around FGK dwarfs.
  •  
19.
  •  
20.
  •  
21.
  • Toshito, T., et al. (author)
  • Measurements of projectile-like Be-8 and B-9 production in 200-400 MeV/nucleon C-12 on water
  • 2008
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993. ; 78:6, s. 4-
  • Journal article (peer-reviewed)abstract
    • We have studied the production of the projectile-like fragments Be-8 and B-9 produced in interactions of 200 to 400 MeV/nucleon carbon ions with water, using emulsion detectors. In this Brief Report we present the first published production cross section of the projectile-like fragment B-9 in the energy region above 100 MeV/nucleon. The measured production cross sections of these nuclides were compared to calculations using a semiempirical model. We found that the measured cross sections deviate from the calculated values by a factor up to about six. This information is of importance for benchmarking and improving heavy ion nuclear reaction models.
  •  
22.
  • Toshito, T., et al. (author)
  • Measurements of total and partial charge-changing cross sections for 200-to 400-MeV/nucleon C-12 on water and polycarbonate
  • 2007
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993. ; 75:5, s. 8-
  • Journal article (peer-reviewed)abstract
    • We have studied charged nuclear fragments produced by 200- to 400-MeV/nucleon carbon ions, interacting with water and polycarbonate, using a newly developed emulsion detector. Total and partial charge-changing cross sections for the production of B, Be, and Li fragments were measured and compared with both previously published measurements and model predictions. This study is of importance for validating and improving carbon-ion therapy treatment planning systems and for estimating the radiological risks for personnel on space missions, because carbon is a significant component of galactic cosmic rays.
  •  
23.
  •  
24.
  • Kawauchi, K., et al. (author)
  • Validation and atmospheric exploration of the sub-Neptune TOI-2136b around a nearby M3 dwarf
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Context. The NASA space telescope TESS is currently in the extended mission of its all-sky search for new transiting planets. Of the thousands of candidates that TESS is expected to deliver, transiting planets orbiting nearby M dwarfs are particularly interesting targets since they provide a great opportunity to characterize their atmospheres by transmission spectroscopy. Aims. We aim to validate and characterize the new sub-Neptune-sized planet candidate TOI-2136.01 orbiting a nearby M dwarf (d = 33.36 +/- 0.02 pc, T-eff = 3373 +/- 108 K) with an orbital period of 7.852 days. Methods. We use TESS data, ground-based multicolor photometry, and radial velocity measurements with the InfraRed Doppler (IRD) instrument on the Subaru Telescope to validate the planetary nature of TOI-2136.01, and estimate the stellar and planetary parameters. We also conduct high-resolution transmission spectroscopy to search for helium in its atmosphere. Results. We confirm that TOI-2136.01 (now named TOI-2136b) is a bona fide planet with a planetary radius of R-p = 2.20 +/- 0.07 R-circle plus and a mass of M-p = 4.7(-2.6)(+3.1) M-circle plus. We also search for helium 10830 angstrom absorption lines and place an upper limit on the equivalent width of <7.8 m angstrom and on the absorption signal of <1.44% with 95% confidence. Conclusions. TOI-2136b is a sub-Neptune transiting a nearby and bright star (J = 10.8 mag), and is a potentially hycean planet, which is a new class of habitable planets with large oceans under a H-2-rich atmosphere, making it an excellent target for atmospheric studies to understand the formation, evolution, and habitability of the small planets.
  •  
25.
  • Luque, R., et al. (author)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • In: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Journal article (peer-reviewed)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 46

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view