SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lefcheck Jonathan S.) "

Sökning: WFRF:(Lefcheck Jonathan S.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rasher, Douglas B., et al. (författare)
  • Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 369:6509, s. 1351-1355
  • Tidskriftsartikel (refereegranskat)abstract
    • Predator loss and climate change are hallmarks of the Anthropocene yet their interactive effects are largely unknown. Here, we show that massive calcareous reefs, built slowly by the alga Clathromorphum nereostratum over centuries to millennia, are now declining because of the emerging interplay between these two processes. Such reefs, the structural base of Aleutian kelp forests, are rapidly eroding because of overgrazing by herbivores. Historical reconstructions and experiments reveal that overgrazing was initiated by the loss of sea otters, Enhydra lutris (which gave rise to herbivores capable of causing bioerosion), and then accelerated with ocean warming and acidification (which increased per capita lethal grazing by 34 to 60% compared with preindustrial times). Thus, keystone predators can mediate the ways in which climate effects emerge in nature and the pace with which they alter ecosystems.
  •  
2.
  • Duffy, J. Emmett, et al. (författare)
  • A Pleistocene legacy structures variation in modern seagrass ecosystems
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:32
  • Tidskriftsartikel (refereegranskat)abstract
    • Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems. 
  •  
3.
  • Edgar, Graham J., et al. (författare)
  • Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity
  • 2017
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Among themost enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15 degrees N and -15 degrees S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.
  •  
4.
  • Stuart-Smith, Rick D., et al. (författare)
  • Integrating abundance and functional traits reveals new global hotspots of fish diversity
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 501:7468, s. 539-
  • Tidskriftsartikel (refereegranskat)abstract
    • Species richness has dominated our view of global biodiversity patterns for centuries(1,2). The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management(3,4). However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling)(5). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q(6)), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only(7,8). There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness(2,4). Our findings suggest that the contribution of species diversity to a range of ecosystem functions varies over large scales, and imply that in tropical regions, which have higher numbers of species, each species contributes proportionally less to community-level ecological processes on average than species in temperate regions. Metrics of ecological function usefully complement metrics of species diversity in conservation management, including when identifying planning priorities and when tracking changes to biodiversity values.
  •  
5.
  • Stuart-Smith, Rick D., et al. (författare)
  • The potential of trait-based approaches to contribute to marine conservation
  • 2015
  • Ingår i: Marine Policy. - : Elsevier BV. - 0308-597X .- 1872-9460. ; 51, s. 148-150
  • Tidskriftsartikel (refereegranskat)abstract
    • The value of diversity metrics to represent ecological communities and inform broad-scale conservation objectives and policy has often been subject to debate and uncertainty [1,2]. In practice, diversity metrics are important in setting management and conservation priorities, just as economic indices contribute to global monetary and financial policies. Thus, key challenges for ecologists are to identify new ways to view and summarise patterns in biodiversity and improve on the metrics available for management purposes. In a recent paper on functional diversity patterns in reef fishes [3], we highlighted the potential of new insights gained from functional trait-based approaches to inform marine management, stressing the need to develop and refine biodiversity measures that are linked to ecology (rather than taxonomy). We used a unique, fisheries-independent reef fish identity and abundance dataset, collected using standardised methods from equatorial to high latitude regions all over the world, to provide the first global view of the distribution of individuals amongst species (including a measure of evenness) and functional traits amongst marine communities. A recent paper by Robinson et al. [4] published in Marine Policy criticised the use of our evenness index as a measure of biodiversity, and questioned the use of functional trait-based metrics derived from surveys of standardised areas for decisions relating to broad-scale management of marine systems. In this paper we respond to Robinson et al. and rebut their claims related to sampling bias and broad-scale applicability of trait-based approaches.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy