SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nagao K) "

Search: WFRF:(Nagao K)

  • Result 1-22 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Namkoong, H, et al. (author)
  • DOCK2 is involved in the host genetics and biology of severe COVID-19
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 609:7928, s. 754-
  • Journal article (peer-reviewed)abstract
    • Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
  •  
3.
  •  
4.
  • Wang, QBS, et al. (author)
  • The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
  • 2022
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 4830-
  • Journal article (peer-reviewed)abstract
    • Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.
  •  
5.
  • Abe, K., et al. (author)
  • Neutron tagging following atmospheric neutrino events in a water Cherenkov detector
  • 2022
  • In: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 17:10
  • Journal article (peer-reviewed)abstract
    • We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 mu s.
  •  
6.
  • Forrest, ARR, et al. (author)
  • A promoter-level mammalian expression atlas
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 507:7493, s. 462-
  • Journal article (peer-reviewed)
  •  
7.
  •  
8.
  • Noguchi, S, et al. (author)
  • FANTOM5 CAGE profiles of human and mouse samples
  • 2017
  • In: Scientific data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4, s. 170112-
  • Journal article (peer-reviewed)abstract
    • In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
  •  
9.
  • Ao, Y., et al. (author)
  • Deep Submillimeter and Radio Observations in the SSA22 Field. I. Powering Sources and the Ly alpha Escape Fraction of Ly alpha Blobs
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 850:2
  • Journal article (peer-reviewed)abstract
    • We study the heating mechanisms and Ly alpha escape fractions of 35 Ly alpha blobs (LABs) at z approximate to 3.1 in the SSA22 field. Dust continuum sources have been identified in 11 of the 35 LABs, all with star formation rates (SFRs) above 100M(circle dot) yr(-1). Likely radio counterparts are detected in 9 out of 29 investigated LABs. The detection of submillimeter dust emission is more linked to the physical size of the Ly alpha emission than to the Ly alpha luminosities of the LABs. A radio excess in the submillimeter/ radio-detected LABs is common, hinting at the presence of active galactic nuclei. Most radio sources without X-ray counterparts are located at the centers of the LABs. However, all X-ray counterparts avoid the central regions. This may be explained by absorption due to exceptionally large column densities along the line-of-sight or by LAB morphologies, which are highly orientation dependent. The median Lya escape fraction is about 3% among the submillimeter-detected LABs, which is lower than a lower limit of 11% for the submillimeter-undetected LABs. We suspect that the large difference is due to the high dust attenuation supported by the large SFRs, the dense large-scale environment as well as large uncertainties in the extinction corrections required to apply when interpreting optical data.
  •  
10.
  • Spinoglio, L., et al. (author)
  • 2017
  • In: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Journal article (peer-reviewed)abstract
    • IR spectroscopy in the range 12-230 mu m with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA's large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z similar to 6.
  •  
11.
  • Esguerra, Jonathan L.S., et al. (author)
  • Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA
  • 2020
  • In: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 32, s. 160-167
  • Journal article (peer-reviewed)abstract
    • Objective: A widely recognized metabolic side effect of glucocorticoid (GC) therapy is steroid-induced diabetes mellitus (DM). However, studies on the molecular basis of GC-induced pancreatic beta cell dysfunction in human beta cells are lacking. The significance of non-coding RNAs in various cellular processes is emerging. In this study, we aimed to show the direct negative impact of GC on beta cell function and elucidate the role of riborepressor GAS5 lincRNA in the GC signaling pathway in human pancreatic beta cells. Methods: Patients undergoing two weeks of high-dose prednisolone therapy were monitored for C-peptide levels. Human pancreatic islets and the human beta cell line EndoC-βH1 were incubated in pharmacological concentrations of dexamethasone. The GAS5 level was modulated using anti-sense LNA gapmeR or short oligonucleotides with GAS5 HREM (hormone response element motif). Immunoblotting and/or real-time PCR were used to assess changes in protein and RNA expression, respectively. Functional characterization included glucose-stimulated insulin secretion and apoptosis assays. Correlation analysis was performed on RNAseq data of human pancreatic islets. Results: We found reduced C-peptide levels in patients undergoing high-dose GC therapy. Human islets and the human beta cell line EndoC-βH1 exposed to GC exhibited reduced insulin secretion and increased apoptosis. Concomitantly, reduced expression of important beta cell transcription factors, PDX1 and NKX6-1, as well as exocytotic protein SYT13 were observed. The expression of the glucocorticoid receptor was decreased, while that of serum and glucocorticoid-regulated kinase 1 (SGK1) was elevated. The expression of these genes was found to significantly correlate with GAS5 in human islet transcriptomics data. Increasing GAS5 levels using GAS5 HREM alleviated the inhibitory effects of dexamethasone on insulin secretion. Conclusions: The direct adverse effect of glucocorticoid in human beta cell function is mediated via important beta cell proteins and components of the GC signaling pathway in an intricate interplay with GAS5 lincRNA, a potentially novel therapeutic target to counter GC-mediated beta cell dysfunction.
  •  
12.
  • Esguerra, Jonathan L.S., et al. (author)
  • MicroRNAs in islet hormone secretion
  • 2018
  • In: Diabetes, Obesity and Metabolism. - : Wiley. - 1462-8902. ; 20:Suppl 2, s. 11-19
  • Research review (peer-reviewed)abstract
    • Pancreatic islet hormone secretion is central in the maintenance of blood glucose homeostasis. During development of hyperglycaemia, the β-cell is under pressure to release more insulin to compensate for increased insulin resistance. Failure of the β-cells to secrete enough insulin results in type 2 diabetes (T2D). MicroRNAs (miRNAs) are short non-coding RNA molecules suitable for rapid regulation of the changes in target gene expression needed in β-cell adaptations. Moreover, miRNAs are involved in the maintenance of α-cell and β-cell phenotypic identities via cell-specific, or cell-enriched expression. Although many of the abundant miRNAs are highly expressed in both cell types, recent research has focused on the role of miRNAs in β-cells. It has been shown that highly abundant miRNAs, such as miR-375, are involved in several cellular functions indispensable in maintaining β-cell phenotypic identity, almost acting as “housekeeping genes” in the context of hormone secretion. Despite the abundance and importance of miR-375, it has not been shown to be differentially expressed in T2D islets. On the contrary, the less abundant miRNAs such as miR-212/miR-132, miR-335, miR-130a/b and miR-152 are deregulated in T2D islets, wherein the latter three miRNAs were shown to play key roles in regulating β-cell metabolism. In this review, we focus on β-cell function and describe miRNAs involved in insulin biosynthesis and processing, glucose uptake and metabolism, electrical activity and Ca2+-influx and exocytosis of the insulin granules. We present current status on miRNA regulation in α-cells, and finally we discuss the involvement of miRNAs in β-cell dysfunction underlying T2D pathogenesis.
  •  
13.
  • Eveson, JW, et al. (author)
  • Pleomorphic adenoma.
  • 2005
  • In: World Health Organization Classification of Tumours. Pathology and genetics of head and neck tumors (Barnes L, Eveson JW, Reichart PA, Sidransky D, Eds.).IARC Press. ; , s. 254-258
  • Book chapter (other academic/artistic)
  •  
14.
  •  
15.
  • Nagao-Kitamoto, H., et al. (author)
  • Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota
  • 2020
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 26, s. 608-617
  • Journal article (peer-reviewed)abstract
    • In germ-free mice colonized with human microbiota, mucosal IL-22 signaling promotes the growth of succinate-consuming commensal bacteria via host mucus glycosylation, and transplantation of these bacteria limits Clostridioides difficile infection. The involvement of host immunity in the gut microbiota-mediated colonization resistance to Clostridioides difficile infection (CDI) is incompletely understood. Here, we show that interleukin (IL)-22, induced by colonization of the gut microbiota, is crucial for the prevention of CDI in human microbiota-associated (HMA) mice. IL-22 signaling in HMA mice regulated host glycosylation, which enabled the growth of succinate-consuming bacteria Phascolarctobacterium spp. within the gut microbiome. Phascolarctobacterium reduced the availability of luminal succinate, a crucial metabolite for the growth of C. difficile, and therefore prevented the growth of C. difficile. IL-22-mediated host N-glycosylation is likely impaired in patients with ulcerative colitis (UC) and renders UC-HMA mice more susceptible to CDI. Transplantation of healthy human-derived microbiota or Phascolarctobacterium reduced luminal succinate levels and restored colonization resistance in UC-HMA mice. IL-22-mediated host glycosylation thus fosters the growth of commensal bacteria that compete with C. difficile for the nutritional niche.
  •  
16.
  •  
17.
  • Nagao, Mototsugu, et al. (author)
  • Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in β-Cells
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:6, s. 1193-1205
  • Journal article (peer-reviewed)abstract
    • Obesity is a risk factor for type 2 diabetes (T2D); however, not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from donors with T2D and non-T2D (ND), especially obese donors (BMI ≥30 kg/m2). Islets from obese donors with T2D had reduced insulin secretion, decreased β-cell exocytosis, and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis, and reduced granule docking. This was accompanied by reduced expression of the exocytotic proteins SNAP25, STXBP1, and VAMP2, likely because CD36 induced downregulation of the insulin receptor substrate (IRS) proteins, suppressed the insulin-signaling phosphatidylinositol 3-kinase/AKT pathway, and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line EndoC-βH1 increased IRS1 and exocytotic protein levels, improved granule docking, and enhanced insulin secretion. Our results demonstrate that β-cells from obese donors with T2D have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity.
  •  
18.
  • Ofori, Jones K., et al. (author)
  • Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Journal article (peer-reviewed)abstract
    • MicroRNAs have emerged as important players of gene regulation with significant impact in diverse disease processes. In type-2 diabetes, in which impaired insulin secretion is a major factor in disease progression, dysregulated microRNA expression in the insulin-secreting pancreatic beta cell has been widely-implicated. Here, we show that miR-130a-3p, miR-130b-3p, and miR-152-3p levels are elevated in the pancreatic islets of hyperglycaemic donors, corroborating previous findings about their upregulation in the islets of type-2 diabetes model Goto-Kakizaki rats. We demonstrated negative regulatory effects of the three microRNAs on pyruvate dehydrogenase E1 alpha (PDHA1) and on glucokinase (GCK) proteins, which are both involved in ATP production. Consequently, we found both proteins to be downregulated in the Goto-Kakizaki rat islets, while GCK mRNA expression showed reduced trend in the islets of type-2 diabetes donors. Overexpression of any of the three microRNAs in the insulin-secreting INS-1 832/13 cell line resulted in altered dynamics of intracellular ATP/ADP ratio ultimately perturbing fundamental ATP-requiring beta cell processes such as glucose-stimulated insulin secretion, insulin biosynthesis and processing. The data further strengthen the wide-ranging influence of microRNAs in pancreatic beta cell function, and hence their potential as therapeutic targets in type-2 diabetes.
  •  
19.
  • Ofori, Jones K, et al. (author)
  • The highly expressed calcium-insensitive synaptotagmin-11 and synaptotagmin-13 modulate insulin secretion
  • 2022
  • In: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 236:1
  • Journal article (peer-reviewed)abstract
    • Aim SYT11 and SYT13, two calcium-insensitive synaptotagmins, are downregulated in islets from type 2 diabetic donors, but their function in insulin secretion is unknown. To address this, we investigated the physiological role of these two synaptotagmins in insulin-secreting cells. Methods Correlations between gene expression levels were performed using previously described RNA-seq data on islets from 188 human donors. SiRNA knockdown was performed in EndoC-beta H1 and INS-1 832/13 cells. Insulin secretion was measured with ELISA. Patch-clamp was used for single-cell electrophysiology. Confocal microscopy was used to determine intracellular localization. Results Human islet expression of the transcription factor PDX1 was positively correlated with SYT11 (p = 2.4e(-10)) and SYT13 (p < 2.2e(-16)). Syt11 and Syt13 both co-localized with insulin, indicating their localization in insulin granules. Downregulation of Syt11 in INS-1 832/13 cells (siSYT11) resulted in increased basal and glucose-induced insulin secretion. Downregulation of Syt13 (siSYT13) decreased insulin secretion induced by glucose and K+. Interestingly, the cAMP-raising agent forskolin was unable to enhance insulin secretion in siSYT13 cells. There was no difference in insulin content, exocytosis, or voltage-gated Ca2+ currents in the two models. Double knockdown of Syt11 and Syt13 (DKD) resembled the results in siSYT13 cells. Conclusion SYT11 and SYT13 have similar localization and transcriptional regulation, but they regulate insulin secretion differentially. While downregulation of SYT11 might be a compensatory mechanism in type-2 diabetes, downregulation of SYT13 reduces the insulin secretory response and overrules the compensatory regulation of SYT11 in a way that could aggravate the disease.
  •  
20.
  • Takahashi, Reisuke H, et al. (author)
  • Accumulation of cellular prion protein within β-amyloid oligomer plaques in aged human brains
  • 2021
  • In: Brain Pathology. - : Wiley. - 1750-3639 .- 1015-6305. ; 31:5, s. 12941-12941
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) is the main cause of dementia, and β-amyloid (Aβ) is a central factor in the initiation and progression of the disease. Different forms of Aβ have been identified as monomers, oligomers, and amyloid fibrils. Many proteins have been implicated as putative receptors of respective forms of Aβ. Distinct forms of Aβ oligomers are considered to be neurotoxic species that trigger the pathophysiology of AD. It was reported that cellular prion protein (PrPC ) is one of the most selective and high-affinity binding partners of Aβ oligomers. The interaction of Aβ oligomers with PrPC is important to synaptic dysfunction and loss. The binding of Aβ oligomers to PrPC has mostly been studied with synthetic peptides, cell culture, and murine models of AD by biochemical and biological methods. However, the molecular mechanisms underlying the relationship between Aβ oligomers and PrPC remain unclear, especially in the human brain. We immunohistochemically investigated the relationship between Aβ oligomers and PrPC in human brain tissue with and without amyloid pathology. We histologically demonstrate that PrPC accumulates with aging in human brain tissue even prior to AD mainly within diffuse-type amyloid plaques, which are composed of more soluble Aβ oligomers without stacked β-sheet fibril structures. Our results suggest that PrPC accumulating plaques are associated with more soluble Aβ oligomers, and appear even prior to AD. The investigation of PrPC accumulating plaques may provide new insights into AD.
  •  
21.
  • Takahashi, Reisuke H., et al. (author)
  • Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease
  • 2017
  • In: Pathology International. - : Wiley. - 1320-5463. ; 67:4, s. 185-193
  • Research review (peer-reviewed)abstract
    • Amyloid plaques and neurofibrillary tangles (NFTs) in the brain are the neuropathological hallmarks of Alzheimer's disease (AD). Amyloid plaques are composed of β-amyloid peptides (Aβ), while NFTs contain hyperphosphorylated tau proteins. Patients with familial AD who have mutations in the amyloid precursor protein (APP) gene have either increased production of Aβ or generate more aggregation-prone forms of Aβ. The findings of familial AD mutations in the APP gene suggest that Aβ plays a central role in the pathophysiology of AD. Aβ42, composed of 42 amino acid residues, aggregates readily and is considered to form amyloid plaque. However, the processes of plaque formation are still not well known. It is generally thought that Aβ is secreted into the extracellular space and aggregates to form amyloid plaques. Aβ as extracellular aggregates and amyloid plaques are thought to be toxic to the surrounding neurons. The intraneuronal accumulation of Aβ has more recently been demonstrated and is reported to be involved in synaptic dysfunction, cognitive impairment, and the formation of amyloid plaques in AD. We herein provide an overview of the process of the intraneuronal accumulation of Aβ and plaque formation, and discuss its implications for the pathology, early diagnosis, and therapy of AD.
  •  
22.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-22 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view