SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neumann Gerald) "

Sökning: WFRF:(Neumann Gerald)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbasi, Rasha, et al. (författare)
  • IceCube search for neutrinos from GRB 221009A
  • 2023
  • Ingår i: Proceedings of 38th International Cosmic Ray Conference - PoS(ICRC 2023). - : Sissa Medialab. ; , s. 1511-
  • Konferensbidrag (refereegranskat)abstract
    •  GRB 221009A is the brightest Gamma Ray Burst (GRB) ever observed. The observed extremelyhigh flux of high and very-high-energy photons provide a unique opportunity to probe the predictedneutrino counterpart to the electromagnetic emission. We have used a variety of methods to searchfor neutrinos in coincidence with the GRB over several time windows during the precursor, promptand afterglow phases of the GRB. MeV scale neutrinos are studied using photo-multiplier ratescalers which are normally used to search for galactic core-collapse supernovae neutrinos. GeVneutrinos are searched starting with DeepCore triggers. These events don’t have directionallocalization, but instead can indicate an excess in the rate of events. 10 GeV - 1 TeV and >TeVneutrinos are searched using traditional neutrino point source methods which take into accountthe direction and time of events with DeepCore and the entire IceCube detector respectively. The>TeV results include both a fast-response analysis conducted by IceCube in real-time with timewindows of T0 − 1 to T0 + 2 hours and T0 ± 1 day around the time of GRB 221009A, as well asan offline analysis with 3 new time windows up to a time window of T0 − 1 to T0 + 14 days, thelongest time period we consider. The combination of observations by IceCube covers 9 ordersof magnitude in neutrino energy, from MeV to PeV, placing upper limits across the range forpredicted neutrino emission.
  •  
2.
  • Guerrero, Andrea, et al. (författare)
  • ALMA Lensing Cluster Survey: Average dust, gas, and star-formation properties of cluster and field galaxies from stacking analysis
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 526:2, s. 2423-2439
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop new tools for continuum and spectral stacking of Atacama Large Millimeter/submillimeter Array (ALMA) data, and apply these to the ALMA Lensing Cluster Survey. We derive average dust masses, gas masses, and star-formation rates (SFRs) from the stacked observed 260-GHz continuum of 3402 individually undetected star-forming galaxies, of which 1450 are cluster galaxies and 1952 field galaxies, over three redshift and stellar mass bins (over z = 0-1.6 and log-11.7), and derive the average molecular gas content by stacking the emission line spectra in a SFR-selected subsample. The average SFRs and specific SFRs of both cluster and field galaxies are lower than those expected for main-sequence (MS) star-forming galaxies, and only galaxies with stellar mass of log-10.6 show dust and gas fractions comparable with those in the MS. The ALMA-Traced average 'highly obscured' SFRs are typically lower than the SFRs observed from optical to near-infrared spectral analysis. Cluster and field galaxies show similar trends in their contents of dust and gas, even when field galaxies were brighter in the stacked maps. From spectral stacking we find a potential CO (J = 4 → 3) line emission (signal-To-noise ratio being ∼4) when stacking cluster and field galaxies with the highest SFRs.
  •  
3.
  • Singh, Gerald G., et al. (författare)
  • Climate impacts on the ocean are making the Sustainable Development Goals a moving target travelling away from us
  • 2019
  • Ingår i: People and Nature. - : John Wiley & Sons. - 2575-8314. ; 1:3, s. 317-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is impacting marine ecosystems and their goods and services in diverse ways, which can directly hinder our ability to achieve the Sustainable Development Goals (SDGs), set out under the 2030 Agenda for Sustainable Development.Through expert elicitation and a literature review, we find that most climate change effects have a wide variety of negative consequences across marine ecosystem services, though most studies have highlighted impacts from warming and consequences of marine species.Climate change is expected to negatively influence marine ecosystem services through global stressors—such as ocean warming and acidification—but also by amplifying local and regional stressors such as freshwater runoff and pollution load.Experts indicated that all SDGs would be overwhelmingly negatively affected by these climate impacts on marine ecosystem services, with eliminating hunger being among the most directly negatively affected SDG.Despite these challenges, the SDGs aiming to transform our consumption and production practices and develop clean energy systems are found to be least affected by marine climate impacts. These findings represent a strategic point of entry for countries to achieve sustainable development, given that these two goals are relatively robust to climate impacts and that they are important pre-requisite for other SDGs.Our results suggest that climate change impacts on marine ecosystems are set to make the SDGs a moving target travelling away from us. Effective and urgent action towards sustainable development, including mitigating and adapting to climate impacts on marine systems are important to achieve the SDGs, but the longer this action stalls the more distant these goals will become.
  •  
4.
  • Voss, Maren, et al. (författare)
  • History and scenarios of future development of Baltic Sea eutrophication
  • 2011
  • Ingår i: Estuarine, Coastal and Shelf Science. - : Elsevier BV. - 0272-7714 .- 1096-0015. ; 92:3, s. 307-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrient loads from watersheds, atmospheric deposition, and cyanobacterial nitrogen fixation have led to eutrophication in the Baltic Sea. Here we give the historical evolution of this, detail some of the specific eutrophication features of the Baltic Sea, and examine future scenarios from climate related changes in the Baltic Sea region. We distinguish northern and southern regions of the Baltic Sea. The northern watersheds have sub-polar climate, are covered by boreal forest and wetlands, are sparsely populated, and the rivers drain into the Gulf of Bothnia. The southern watersheds have a marine influenced temperate climate, are more densely populated and are industrially highly developed. The southern areas are drained by several large rivers, including the representative Oder River. We compare these regions to better understand the present, and future changes in Baltic Sea eutrophication. Comparing the future projections for the two regions, we suggest that in addition to changes in nutrient inputs, increased temperature and precipitation are likely to become important forcings. Rising temperature may increase release of dissolved organic matter (DOM) from soils and may alter the vegetation cover which may in turn lead to changed nutrient and organic matter input to the Baltic Sea. For the southern Oder River catchment a model study of nutrient input is evaluated, MONERIS (Modelling Nutrient Emissions in River Systems). The strong correlation between precipitation, flow and nutrient discharge indicates a likely increase in nutrient concentrations from diffuse sources in future. The nutrients from the Oder River are modified in a lagoon, where removal processes change the stoichiometry, but have only minor effects on the productivity. We suggest that the lagoon and other nearshore areas fulfil important ecological services, especially the removal of large quantities of riverine nitrogen but at the same time are threatened systems due to increasing coastal hypoxia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy