SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ranke Peter S.) "

Search: WFRF:(Ranke Peter S.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wit, J M., et al. (author)
  • Personalized Approach to Growth Hormone Treatment: Clinical Use of Growth Prediction Models
  • 2013
  • In: Hormone Research in Paediatrics. - : Karger. - 1663-2818 .- 1663-2826. ; 79:5, s. 257-270
  • Research review (peer-reviewed)abstract
    • The goal of growth hormone (GH) treatment in a short child is to attain a fast catch-up growth toward the target height (TH) standard deviation score (SDS), followed by a maintenance phase, a proper pubertal height gain, and an adult height close to TH. The short-term response variable of GH treatment, first-year height velocity (HV) (cm/year or change in height SDS), can either be compared with GH response charts for diagnosis, age and gender, or with predicted HV based on prediction models. Three types of prediction models have been described: the Kabi International Growth Hormone Study models, the Gothenburg models and the Cologne model. With these models, 50-80% of the variance could be explained. When used prospectively, individualized dosing reduces the variation in growth response in comparison with a fixed dose per body weight. Insulin-like growth factor-I-based dose titration also led to a decrease in the variation. It is uncertain whether adding biochemical, genetic or proteomic markers may improve the accuracy of the prediction. Prediction models may lead to a more evidence-based approach to determine the GH dose regimen and may reduce the drug costs for GH treatment. There is a need for user-friendly software programs to make prediction models easily available in the clinic.
  •  
2.
  • Collett-Solberg, Paulo F., et al. (author)
  • Diagnosis, Genetics, and Therapy of Short Stature in Children : A Growth Hormone Research Society International Perspective
  • 2019
  • In: Hormone Research in Paediatrics. - : S. Karger. - 1663-2818 .- 1663-2826. ; 92:1, s. 1-14
  • Journal article (peer-reviewed)abstract
    • The Growth Hormone Research Society (GRS) convened a Workshop in March 2019 to evaluate the diagnosis and therapy of short stature in children. Forty-six international experts participated at the invitation of GRS including clinicians, basic scientists, and representatives from regulatory agencies and the pharmaceutical industry. Following plenary presentations addressing the current diagnosis and therapy of short stature in children, breakout groups discussed questions produced in advance by the planning committee and reconvened to share the group reports. A writing team assembled one document that was subsequently discussed and revised by participants. Participants from regulatory agencies and pharmaceutical companies were not part of the writing process. Short stature is the most common reason for referral to the pediatric endocrinologist. History, physical examination, and auxology remain the most important methods for understanding the reasons for the short stature. While some long-standing topics of controversy continue to generate debate, including in whom, and how, to perform and interpret growth hormone stimulation tests, new research areas are changing the clinical landscape, such as the genetics of short stature, selection of patients for genetic testing, and interpretation of genetic tests in the clinical setting. What dose of growth hormone to start, how to adjust the dose, and how to identify and manage a suboptimal response are still topics to debate. Additional areas that are expected to transform the growth field include the development of long-acting growth hormone preparations and other new therapeutics and diagnostics that may increase adult height or aid in the diagnosis of growth hormone deficiency.
  •  
3.
  • Lundregan, Sarah L., et al. (author)
  • Inferences of genetic architecture of bill morphology in house sparrow using a high-density SNP array point to a polygenic basis
  • 2018
  • In: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 27:17, s. 3498-3514
  • Journal article (peer-reviewed)abstract
    • Understanding the genetic architecture of quantitative traits can provide insights into the mechanisms driving phenotypic evolution. Bill morphology is an ecologically important and phenotypically variable trait, which is highly heritable and closely linked to individual fitness. Thus, bill morphology traits are suitable candidates for gene mapping analyses. Previous studies have revealed several genes that may influence bill morphology, but the similarity of gene and allele effects between species and populations is unknown. Here, we develop a custom 200K SNP array and use it to examine the genetic basis of bill morphology in 1857 house sparrow individuals from a large-scale, island metapopulation off the coast of Northern Norway. We found high genomic heritabilities for bill depth and length, which were comparable with previous pedigree estimates. Candidate gene and genomewide association analyses yielded six significant loci, four of which have previously been associated with craniofacial development. Three of these loci are involved in bone morphogenic protein (BMP) signalling, suggesting a role for BMP genes in regulating bill morphology. However, these loci individually explain a small amount of variance. In combination with results from genome partitioning analyses, this indicates that bill morphology is a polygenic trait. Any studies of eco-evolutionary processes in bill morphology are therefore dependent on methods that can accommodate polygenic inheritance of the phenotype and molecular-scale evolution of genetic architecture.
  •  
4.
  • Ranke, Peter S., et al. (author)
  • Long-distance dispersal in the short-distance dispersing house sparrow (Passer domesticus)
  • 2024
  • In: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 14:5
  • Journal article (peer-reviewed)abstract
    • The house sparrow (Passer domesticus) is a small passerine known to be highly sedentary. Throughout a 30-year capture-mark-recapture study, we have obtained occasional reports of recoveries far outside our main metapopulation study system, documenting unusually long dispersal distances. Our records constitute the highest occurrence of long-distance dispersal events recorded for this species in Scandinavia. Such long-distance dispersals radically change the predicted distribution of dispersal distances and connectedness for our study metapopulation. Moreover, it reveals a much greater potential for colonization than formerly recorded for the house sparrow, which is an invasive species across four continents. These rare and occasional long-distance dispersal events are challenging to document but may have important implications for the genetic composition of small and isolated populations and for our understanding of dispersal ecology and evolution.
  •  
5.
  • Saatoglu, Dilan, et al. (author)
  • Dispersal in a house sparrow metapopulation : An integrative case study of genetic assignment calibrated with ecological data and pedigree information
  • 2021
  • In: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 30:19, s. 4740-4756
  • Journal article (peer-reviewed)abstract
    • Dispersal has a crucial role determining ecoevolutionary dynamics through both gene flow and population size regulation. However, to study dispersal and its consequences, one must distinguish immigrants from residents. Dispersers can be identified using telemetry, capture-mark-recapture (CMR) methods, or genetic assignment methods. All of these methods have disadvantages, such as high costs and substantial field efforts needed for telemetry and CMR surveys, and adequate genetic distance required in genetic assignment. In this study, we used genome-wide 200K Single Nucleotide Polymorphism data and two different genetic assignment approaches (GSI_SIM, Bayesian framework; BONE, network-based estimation) to identify the dispersers in a house sparrow (Passer domesticus) metapopulation sampled over 16 years. Our results showed higher assignment accuracy with BONE. Hence, we proceeded to diagnose potential sources of errors in the assignment results from the BONE method due to variation in levels of interpopulation genetic differentiation, intrapopulation genetic variation and sample size. We show that assignment accuracy is high even at low levels of genetic differentiation and that it increases with the proportion of a population that has been sampled. Finally, we highlight that dispersal studies integrating both ecological and genetic data provide robust assessments of the dispersal patterns in natural populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view