SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tuomi Tiinamaija) "

Sökning: WFRF:(Tuomi Tiinamaija)

  • Resultat 1-25 av 167
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Zuydam, NR, et al. (författare)
  • A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
  • 2018
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 67:7, s. 1414-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 × 10−8) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.
  •  
2.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • Fasting Versus Postload Plasma Glucose Concentration and the Risk for Future Type 2 Diabetes Results from the Botnia Study
  • 2009
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 32:2, s. 281-286
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE - The purpose of this study was to assess the efficacy of the postload plasma glucose concentration in predicting future risk of type 2 diabetes, compared with prediction models based oil measurement. of the fasting plasma glucose (FPG) concentration. RESEARCH DESIGN AND METHODS - A total of 2,442 subjects from the Botnia Study, who were free Of type 2 diabetes at baseline, received an oral glucose tolerance test (OGTT) at baseline and after 7-8 years of follow-up. Future risk for type 2 diabetes was assessed with area under the receiver-operating characteristic curve for prediction models based up measurement of the FPG concentration 1) with or without a 1-h plasma glucose concentration during the OGTT and 2) with or without the metabolic syndrome. RESULTS - Prediction models based on measurement of the FPG concentration were weak predictors for the risk of Future type 2 diabetes. Addition of a 1-h plasma glucose Concentration markedly enhanced prediction Of the risk of future type 2 diabetes. A cut point of 155 mg/dl for the 1-h plasma glucose concentration during the OGTT and presence Of the metabolic syndrome were used to Stratify subjects in each glucose tolerance group into low, intermediate, and high risk for future type 2 diabetes. CONCLUSIONS - The plasma glucose concentration at 1 h during the OGTT is a Strong predictor of future risk for type 2 diabetes and adds to the prediction power of models based on measurements made during the fasting state. A plasma glucose cut point of 155 mg/dl Plus the Adult Treatment Panel III criteria for the metabolic syndrome can be used to stratify nondiabetic subjects into low-, intermediate-, and high-risk groups.
  •  
3.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • Minimal Contribution of Fasting Hyperglycemia to the Incidence of Type 2 Diabetes in Subjects With Normal 2-h Plasma Glucose
  • 2010
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 33:3, s. 557-561
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE - To assess the relative contribution of increased fasting and postload plasma glucose concentrations to the incidence of type 2 diabetes in subjects with a normal 2-h plasma glucose concentration. RESEARCH DESIGN AND METHODS - A total of 3,450 subjects with 2-h plasma glucose concentration < 140 mg/dl at baseline were followed up in the San Antonio Heart Study (SAHS) and the Botnia Study for 7-8 years. The incidence of type 2 diabetes at follow-up was related to the fasting, 1-h, and 2-h plasma glucose concentrations. RESULTS - in subjects with 2-h plasma glucose < 140 mg/dl, the incidence of type 2 diabetes increased with increasing fasting plasma glucose (FPG) and 1-h and 2-h plasma glucose concentrations. In a multivariate logistic analysis, after adjustment for all diabetes risk factors, the FPG concentration was a Strong predictor Of type 2 diabetes in both the SAHS and the Botnia Study (P < 0.0001). However, when the 1-h plasma glucose, but not 2-h plasma glucose, concentration was added to the model, FPG concentration was no longer a significant predictor of type 2 diabetes in both Studies (NS). When subjects were matched for the level of 1-h plasma glucose concentration, the incidence Of type 2 diabetes markedly increased with the increase in 1-h plasma glucose, but the increase in FPG was not associated with a significant increase in the incidence of type 2 diabetes. CONCLUSIONS - An increase in postload glycemia in the normal range is associated with an increase in the incidence of type 2 diabetes. After controlling for 1-h plasma glucose concentration, the increase in FPG concentration is not associated with an increase in the incidence of type 2 diabetes.
  •  
4.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes
  • 2010
  • Ingår i: Diabetes/Metabolism Research & Reviews. - : Wiley. - 1520-7552 .- 1520-7560. ; 26:4, s. 280-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The aim of the study is to assess the relationship between the shape of plasma glucose concentration during the OGTT and future risk for T2DM. Methods 2445 non-diabetic subjects from the Botnia study received an OGTT at baseline and after 7-8 years of follow-up. Results NGT and IFG subjects who returned their plasma glucose concentration following an ingested glucose load below FPG within 60 min had increased insulin sensitivity, greater insulin secretion and lower risk for future T2DM compared to NGT and IFG subjects whose post-load plasma glucose concentration required 120 min or longer to return their plasma glucose level to FPG level. IGT subjects who had a lower plasma glucose concentration at 1-h compared to 2-h during oGrr had greater insulin sensitivity, better beta cell function and lower risk for future T2DM. Conclusions These data suggest that the shape of glucose curve can be utilized to assess future risk for T2DM. Copyright (C) 2010 John Wiley & Sons, Ltd.
  •  
5.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • Two-Step Approach for the Prediction of Future Type 2 Diabetes Risk
  • 2011
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 34:9, s. 2108-2112
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-To develop a model for the prediction of type 2 diabetes mellitus (T2DM) risk on the basis of a multivariate logistic model and 1-h plasma glucose concentration (1-h PG). RESEARCH DESIGN AND METHODS-The model was developed in a cohort of 1,562 non-diabetic subjects from the San Antonio Heart Study (SAHS) and validated in 2,395 nondiabetic subjects in the Botnia Study. A risk score on the basis of anthropometric parameters, plasma glucose and lipid profile, and blood pressure was computed for each subject. Subjects with a risk score above a certain cut point were considered to represent high-risk individuals, and their 1-h PG concentration during the oral glucose tolerance test was used to further refine their future T2DM risk. RESULTS-We used the San Antonio Diabetes Prediction Model (SADPM) to generate the initial risk score. A risk-score value of 0.065 was found to be an optimal cut point for initial screening and selection of high-risk individuals. A 1-h PG concentration >140 mg/dL in high-risk individuals (whose risk score was >0.065) was the optimal cut point for identification of subjects at increased risk. The two cut points had 77.8, 77.4, and 44.8% (for the SAHS) and 75.8, 71.6, and 11.9% (for the Botnia Study) sensitivity, specificity, and positive predictive value, respectively, in the SAHS and Botnia Study. CONCLUSIONS-A two-step model, based on the combination of the SADPM and 1-h PG, is a useful tool for the identification of high-risk Mexican-American and Caucasian individuals. Diabetes Care 34:2108-2112, 2011
  •  
6.
  • Ahlqvist, Emma, et al. (författare)
  • A link between GIP and osteopontin in adipose tissue and insulin resistance.
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2088-2094
  • Tidskriftsartikel (refereegranskat)abstract
    • Low grade inflammation in obesity is associated with accumulation of the macrophagederived cytokine osteopontin in adipose tissue and induction of local as well as systemic insulin resistance. Since GIP (glucose-dependent insulinotropic polypeptide) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate osteopontin (OPN) expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13±}0.04 vs 0.04±}0.01, P<0.05) and correlated inversely with measures of insulin sensitivity (r=-0.24, P=0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with lower amount of the exon 9 containing isoform required for transmembrane activity. Carriers of the A-allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone, but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of GIPR rs10423928 A-allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.
  •  
7.
  •  
8.
  •  
9.
  • Ahlqvist, Emma, et al. (författare)
  • Novel subgroups of adult-onset diabetes and their association with outcomes : a data-driven cluster analysis of six variables
  • 2018
  • Ingår i: The Lancet Diabetes and Endocrinology. - 2213-8587 .- 2213-8595. ; 6:5, s. 361-369
  • Tidskriftsartikel (refereegranskat)abstract
    •  BackgroundDiabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis.MethodsWe did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, and homoeostatic model assessment 2 estimates of β-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations.FindingsWe identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes.InterpretationWe stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes.
  •  
10.
  • Ahuja, Vasudha, et al. (författare)
  • Accuracy of 1-Hour Plasma Glucose During the Oral Glucose Tolerance Test in Diagnosis of Type 2 Diabetes in Adults : A Meta-analysis
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:4, s. 1062-1069
  • Forskningsöversikt (refereegranskat)abstract
    • OBJECTIVE: One-hour plasma glucose (1-h PG) during the oral glucose tolerance test (OGTT) is an accurate predictor of type 2 diabetes. We performed a meta-analysis to determine the optimum cutoff of 1-h PG for detection of type 2 diabetes using 2-h PG as the gold standard. RESEARCH DESIGN AND METHODS: We included 15 studies with 35,551 participants from multiple ethnic groups (53.8% Caucasian) and 2,705 newly detected cases of diabetes based on 2-h PG during OGTT. We excluded cases identified only by elevated fasting plasma glucose and/or HbA1c. We determined the optimal 1-h PG threshold and its accuracy at this cutoff for detection of diabetes (2-h PG ≥11.1 mmol/L) using a mixed linear effects regression model with different weights to sensitivity/specificity (2/3, 1/2, and 1/3). RESULTS: Three cutoffs of 1-h PG, at 10.6 mmol/L, 11.6 mmol/L, and 12.5 mmol/L, had sensitivities of 0.95, 0.92, and 0.87 and specificities of 0.86, 0.91, and 0.94 at weights 2/3, 1/2, and 1/3, respectively. The cutoff of 11.6 mmol/L (95% CI 10.6, 12.6) had a sensitivity of 0.92 (0.87, 0.95), specificity of 0.91 (0.88, 0.93), area under the curve 0.939 (95% confidence region for sensitivity at a given specificity: 0.904, 0.946), and a positive predictive value of 45%. CONCLUSIONS: The 1-h PG of ≥11.6 mmol/L during OGTT has a good sensitivity and specificity for detecting type 2 diabetes. Prescreening with a diabetes-specific risk calculator to identify high-risk individuals is suggested to decrease the proportion of false-positive cases. Studies including other ethnic groups and assessing complication risk are warranted.
  •  
11.
  •  
12.
  • Almgren, Peter, et al. (författare)
  • Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study.
  • 2011
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 54, s. 2811-2819
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: To study the heritability and familiality of type 2 diabetes and related quantitative traits in families from the Botnia Study in Finland. METHODS: Heritability estimates for type 2 diabetes adjusted for sex, age and BMI are provided for different age groups of type 2 diabetes and for 34 clinical and metabolic traits in 5,810 individuals from 942 families using a variance component model (SOLAR). In addition, family means of these traits and their distribution across families are calculated. RESULTS: The strongest heritability for type 2 diabetes was seen in patients with age at onset 35-60 years (h (2) = 0.69). However, including patients with onset up to 75 years dropped the h (2) estimates to 0.31. Among quantitative traits, the highest h (2) estimates in all individuals and in non-diabetic individuals were seen for lean body mass (h (2) = 0.53-0.65), HDL-cholesterol (0.52-0.61) and suppression of NEFA during OGTT (0.63-0.76) followed by measures of insulin secretion (insulinogenic index [IG(30)] = 0.41-0.50) and insulin action (insulin sensitivity index [ISI] = 0.37-0.40). In contrast, physical activity showed rather low heritability (0.16-0.18), whereas smoking showed strong heritability (0.57-0.59). Family means of these traits differed two- to fivefold between families belonging to the lowest and highest quartile of the trait (p < 0.00001). CONCLUSIONS/INTERPRETATION: To detect stronger genetic effects in type 2 diabetes, it seems reasonable to restrict inclusion of patients to those with age at onset 35-60 years. Sequencing of families with extreme quantitative traits could be an important next step in the dissection of the genetics of type 2 diabetes.
  •  
13.
  • Alyass, Akram, et al. (författare)
  • Modelling of OGTT curve identifies 1 h plasma glucose level as a strong predictor of incident type 2 diabetes: results from two prospective cohorts
  • 2015
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 58:1, s. 87-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis The relevance of the OGTT in predicting type 2 diabetes is unclear. We assessed the performance of 14 OGTT glucose traits in type 2 diabetes prediction. Methods We studied 2,603 and 2,386 Europeans from the Botnia study and Malmo Prevention Project (MPP) cohorts with baseline OGTT data. Over a follow-up period of 4.94 years and 23.5 years, 155 (5.95%) and 467 (19.57%) participants, respectively, developed type 2 diabetes. The main outcome was incident type 2 diabetes. Results One-hour plasma glucose (1h-PG) was a fair/good predictor of incident type 2 diabetes in the Botnia study and MPP (AUC for receiver operating characteristic [AUC(ROC)] 0.80 [0.77, 0.84] and 0.70 [0.68, 0.73]). 1h-PG alone outperformed the prediction model of multiple clinical risk factors (age, sex, BMI, family history of type 2 diabetes) in the Botnia study and MPP (AUC(ROC) 0.75 [0.72, 0.79] and 0.67 [0.64, 0.70]). The same clinical risk factors added to 1h-PG modestly increased prediction for incident type 2 diabetes (Botnia, AUC(ROC) 0.83 [0.80, 0.86]; MPP, AUC(ROC) 0.74 [0.72, 0.77]). 1h-PG also outperformed HbA(1c) in predicting type 2 diabetes in the Botnia cohort. A 1h-PG value of 8.9 mmol/l and 8.4 mmol/l was the optimal cut-point for initial screening and selection of high-risk individuals in the Botnia study and MPP, respectively, and represented 30% and 37% of all participants in these cohorts. High-risk individuals had a substantially increased risk of incident type 2 diabetes (OR 8.0 [5.5, 11.6] and 3.8 [3.1, 4.7]) and captured 75% and 62% of all incident type 2 diabetes in the Botnia study and MPP. Conclusions/interpretation1h-PG is a valuable prediction tool for identifying adults at risk for future type 2 diabetes.
  •  
14.
  • Andersen, Mette K., et al. (författare)
  • Association of variants in HLA-DQA1-DQB1, PTPN22, INS, and CTLA4 with GAD autoantibodies and insulin secretion in nondiabetic adults of the Botnia Prospective Study
  • 2012
  • Ingår i: European Journal of Endocrinology. - 1479-683X. ; 167:1, s. 27-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Previously, we observed an association between family history of type 1 diabetes and development of non-insulin-dependent diabetes. The aims of this study were to assess whether type 1 diabetes susceptibility gene variants explain this association and investigate the effect of the variants on insulin secretion and presence of glutamic acid decarboxylase autoantibodies (GADA) in nondiabetic adults. Design and methods: Polymorphisms in INS (rs689), PTPN22 (rs2476601), CTLA4 (rs3087243), and the HLA-DQA1-DQB1 regions (rs2187668 and rs7454108 tagging HLA-DQ2.5 and HLA-DQ8 respectively) were genotyped in the Botnia Prospective Study (n=2764), in which initially nondiabetic participants were followed for a mean of 8.1 years. Results: The variants did not explain the association between family history of type 1 diabetes and development of non-insulin-dependent diabetes. In these nondiabetic adults, HLA-DQ and PTPN22 risk genotypes were associated with GADA (HLA-DQ2.5/HLA-DQ8 or HLA-DQ8: OR (95% CI): 1.7 (1.3-2.3), P=0.0004; PTPN22 CT/TT: OR: 1.6 (1.2-2.2), P=0.003; P values were adjusted for sex, age, BMI, and follow-up time). A higher genetic risk score was associated with lower insulin secretion (insulinogenic index: 13.27 (16.27) vs 12.69 (15.27) vs 10.98 (13.06), P=0.02) and better insulin sensitivity index (risk score of 0-1 vs 2-3 vs 4-6: 142 (111) vs 144 (118) vs 157 (127), P=0.01) at baseline and a poorer capacity to compensate for the increased insulin demand after follow-up. Conclusions: In nondiabetic adults, HLA-DQ2.5/HLA-DQ8 and PTPN22 CT/TT genotypes were associated with GADA.
  •  
15.
  • Andersen, Mette K., et al. (författare)
  • Latent Autoimmune Diabetes in Adults Differs Genetically From Classical Type 1 Diabetes Diagnosed After the Age of 35 Years
  • 2010
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 33:9, s. 2062-2064
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE- We studied differences between patients with latent autoimmune diabetes in adults (LADA), type 2 diabetes, and classical type 1 diabetes diagnosed after age 35 years. RESEARCH DESIGN AND METHODS- Polymorphisms in HLA-DQB1, INS, PTPN22, and CTLA4 were genotyped in patients with LADA (n = 213), type 1 diabetes diagnosed at >35 years of age (T1D(>35y); n = 257) or <20 years of age (T1D(<20y); n = 158), and type 2 diabetes. RESULTS- Although patients with LADA had an increased frequency of HLA-DQB1 and PTPN22 risk genotypes and alleles compared with type 2 diabetic subjects, the frequency was significantly lower compared with T1D(>35y) patients. Genotype frequencies, measures of insulin secretion, and metabolic traits within LADA differed according to GAD antibody (GADA) quartiles, but even the highest quartile differed from type 1 diabetes. Having two or more risk genotypes was associated with lower C-peptide concentrations in LADA. CONCLUSIONS- LADA patients differed genetically and phenotypically from both T1D(>35y) and type 2 diabetic patients in a manner dependent on GADA levels.
  •  
16.
  • Andersen, Mette, et al. (författare)
  • Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 57:9, s. 1859-1868
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Latent autoimmune diabetes in adults (LADA) is phenotypically a hybrid of type 1 and type 2 diabetes. Genetically LADA is poorly characterised but does share genetic predisposition with type 1 diabetes. We aimed to improve the genetic characterisation of LADA and hypothesised that type 2 diabetes-associated gene variants also predispose to LADA, and that the associations would be strongest in LADA patients with low levels of GAD autoantibodies (GADA). Methods We assessed 41 type 2 diabetes-associated gene variants in Finnish (phase I) and Swedish (phase II) patients with LADA (n=911) or type 1 diabetes (n=406), all diagnosed after the age of 35 years, as well as in non-diabetic control individuals 40 years or older (n=4,002). Results Variants in the ZMIZ1 (rs12571751, p=4.1 x 10(-5)) and TCF7L2 (rs7903146, p=5.8 x 10(-4)) loci were strongly associated with LADA. Variants in the KCNQ1 (rs2237895, p=0.0012), HHEX (rs1111875, p=0.0024 in Finns) and MTNR1B (rs10830963, p=0.0039) loci showed the strongest association in patients with low GADA, supporting the hypothesis that the disease in these patients is more like type 2 diabetes. In contrast, variants in the KLHDC5 (rs10842994, p=9.5 x 10(-4) in Finns), TP53INP1 (rs896854, p=0.005), CDKAL1 (rs7756992, p=7.0 x 10(-4); rs7754840, p=8.8 x 10(-4)) and PROX1 (rs340874, p=0.003) loci showed the strongest association in patients with high GADA. For type 1 diabetes, a strong association was seen for MTNR1B (rs10830963, p=3.2 x 10(-6)) and HNF1A (rs2650000, p=0.0012). Conclusions/interpretation LADA and adult-onset type 1 diabetes share genetic risk variants with type 2 diabetes, supporting the idea of a hybrid form of diabetes and distinguishing them from patients with classical young-onset type 1 diabetes.
  •  
17.
  • Antonelli, A, et al. (författare)
  • Autoimmunity to CD38 and GAD in Type I and Type II diabetes: CD38 and HLA genotypes and clinical phenotypes
  • 2002
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 45:9, s. 1298-1306
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis. Autoantibodies against CD38 have been found in some patients with Type II (non-insulin-dependent) diabetes mellitus and have been shown to stimulate insulin secretion by cultured human islets. We tested whether this new form of autoimmunity, (i) overlaps with anti-GAD autoimmunity, (ii) identifies an insulin-deficient phenotype, (iii) is under the influence of genetic factors. Methods. We screened 496 adults by immuno-blot analysis in the Botnia Study (298 with Type II and 98 with Type I (insulin-dependent) diabetes mellitus, 100 non-diabetic control subjects). Results. CD38-autoantibodies were found in 8.4% of Type II diabetic patients (p<0.003 vs 0% of control subjects), particularly in anti-GAD positive (14% vs 6% of anti-GAD negative, p=0.0004). CD38ab were also found in 4% of Type I diabetic patients; in the whole study group, 59% of anti-CD38 positive had DQB1 *02 compared with 38% of anti-CD38 negative (p=0.04). On the OGTT, beta-cell function (as the ratio of insulin-to-glucose areas) was impaired (p=0.02) only in association with anti-GAD positivity (3.2 +/- 3.1 U/mol, mean +/- SD) but not in anti-CD38 positive patients (5.6 +/- 2.9) as compared with patients free of autoimmunity (4.5 +/- 4.6, p=NS). In 44 Type II diabetic patients (22 negative and 22 positive for anti-CD38), no mutations were detected in any of the 8 exons, 5' end of intron 1 or the 5' and 3' untranslated regions of the CD38 gene. The previously described missense mutation (Arg140Trp) in exon 3 was not found in this cohort. There was no association between the PvUII polymorphism and clinical phenotype. Conclusion. Anti-CD38 autoimmunity identifies a clinical phenotype similar to non-autoimmune Type II diabetes, with relative preserved beta-cell function and weak genetic influence.
  •  
18.
  • Asplund, Olof, et al. (författare)
  • Islet Gene View-a tool to facilitate islet research
  • 2022
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (GCG, 56%), amylin (IAPP, 52%), insulin (INS, 44%), and somatostatin (SST, 24%). Inhibition of two DEGs, UNC5D and SERPINE2, impaired glucose-stimulated insulin secretion and impacted cell survival in a human beta-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.
  •  
19.
  • Bacos, Karl, et al. (författare)
  • Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D.
  •  
20.
  • Barreiro, Karina, et al. (författare)
  • Capturing the Kidney Transcriptome by Urinary Extracellular Vesicles—From Pre-Analytical Obstacles to Biomarker Research
  • 2023
  • Ingår i: Genes. - 2073-4425. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary extracellular vesicles (uEV) hold non-invasive RNA biomarkers for genitourinary tract diseases. However, missing knowledge about reference genes and effects of preanalytical choices hinder biomarker studies. We aimed to assess how preanalytical variables (urine storage temperature, isolation workflow) affect diabetic kidney disease (DKD)—linked miRNAs or kidney—linked miRNAs and mRNAs (kidney-RNAs) in uEV isolates and to discover stable reference mRNAs across diverse uEV datasets. We studied nine raw and normalized sequencing datasets including healthy controls and individuals with prostate cancer or type 1 diabetes with or without albuminuria. We focused on kidney-RNAs reviewing literature for DKD-linked miRNAs from kidney tissue, cell culture and uEV/urine experiments. RNAs were analyzed by expression heatmaps, hierarchical clustering and selecting stable mRNAs with normalized counts (>200) and minimal coefficient of variation. Kidney-RNAs were decreased after urine storage at −20 °C vs. −80 °C. Isolation workflows captured kidney-RNAs with different efficiencies. Ultracentrifugation captured DKD -linked miRNAs that separated healthy and diabetic macroalbuminuria groups. Eleven mRNAs were stably expressed across the datasets. Hence, pre-analytical choices had variable effects on kidney-RNAs—analyzing kidney-RNAs complemented global correlation, which could fade differences in some relevant RNAs. Replicating prior DKD-marker results and discovery of candidate reference mRNAs encourages further uEV biomarker studies.
  •  
21.
  • Barreiro, Karina, et al. (författare)
  • Urinary extracellular vesicles : Assessment of pre-analytical variables and development of a quality control with focus on transcriptomic biomarker research
  • 2021
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.
  •  
22.
  • Bergman, Michael, et al. (författare)
  • International Diabetes Federation Position Statement on the 1-hour post-load plasma glucose for the diagnosis of intermediate hyperglycaemia and type 2 diabetes
  • 2024
  • Ingår i: Diabetes Research and Clinical Practice. - 0168-8227. ; 209
  • Tidskriftsartikel (refereegranskat)abstract
    • Many individuals with intermediate hyperglycaemia (IH), including impaired fasting glycaemia (IFG) and impaired glucose tolerance (IGT), as presently defined, will progress to type 2 diabetes (T2D). There is confirmatory evidence that T2D can be prevented by lifestyle modification and/or medications, in people with IGT diagnosed by 2-h plasma glucose (PG) during a 75-gram oral glucose tolerance test (OGTT). Over the last 40 years, a wealth of epidemiological data has confirmed the superior value of 1-h plasma glucose (PG) over fasting PG (FPG), glycated haemoglobin (HbA1c) and 2-h PG in populations of different ethnicity, sex and age in predicting diabetes and associated complications including death. Given the relentlessly rising prevalence of diabetes, a more sensitive, practical method is needed to detect people with IH and T2D for early prevention or treatment in the often lengthy trajectory to T2D and its complications. The International Diabetes Federation (IDF) Position Statement reviews findings that the 1-h post-load PG ≥ 155 mg/dL (8.6 mmol/L) in people with normal glucose tolerance (NGT) during an OGTT is highly predictive for detecting progression to T2D, micro- and macrovascular complications, obstructive sleep apnoea, cystic fibrosis-related diabetes mellitus, metabolic dysfunction-associated steatotic liver disease, and mortality in individuals with risk factors. The 1-h PG of 209 mg/dL (11.6 mmol/L) is also diagnostic of T2D. Importantly, the 1-h PG cut points for diagnosing IH and T2D can be detected earlier than the recommended 2-h PG thresholds. Taken together, the 1-h PG provides an opportunity to avoid misclassification of glycaemic status if FPG or HbA1c alone are used. The 1-h PG also allows early detection of high-risk people for intervention to prevent progression to T2D which will benefit the sizeable and growing population of individuals at increased risk of T2D. Using a 1-h OGTT, subsequent to screening with a non-laboratory diabetes risk tool, and intervening early will favourably impact the global diabetes epidemic. Health services should consider developing a policy for screening for IH based on local human and technical resources. People with a 1-h PG ≥ 155 mg/dL (8.6 mmol/L) are considered to have IH and should be prescribed lifestyle intervention and referred to a diabetes prevention program. People with a 1-h PG ≥ 209 mg/dL (11.6 mmol/L) are considered to have T2D and should have a repeat test to confirm the diagnosis of T2D and then referred for further evaluation and treatment. The substantive data presented in the Position Statement provides strong evidence for redefining current diagnostic criteria for IH and T2D by adding the 1-h PG.
  •  
23.
  • Breitfeld, Jana, et al. (författare)
  • Genetic dissection of serum vaspin highlights its causal role in lipid metabolism
  • 2023
  • Ingår i: Obesity. - 1930-7381. ; 31:11, s. 2862-2874
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Vaspin (visceral adipose tissue derived serine protease inhibitor, SERPINA12) is associated with obesity-related metabolic traits, but its causative role is still elusive. The role of genetics in serum vaspin variability to establish its causal relationship with metabolically relevant traits was investigated. Methods: A meta-analysis of genome-wide association studies for serum vaspin from six independent cohorts (N = 7446) was conducted. Potential functional variants of vaspin were included in Mendelian randomization (MR) analyses to assess possible causal pathways between vaspin and homeostasis model assessment and lipid traits. To further validate the MR analyses, data from Genotype-Tissue Expression (GTEx) were analyzed, db/db mice were treated with vaspin, and serum lipids were measured. Results: A total of 468 genetic variants represented by five independent variants (rs7141073, rs1956709, rs4905216, rs61978267, rs73338689) within the vaspin locus were associated with serum vaspin (all p < 5×10−8, explained variance 16.8%). MR analyses revealed causal relationships between serum vaspin and triglycerides, low-density lipoprotein, and total cholesterol. Gene expression correlation analyses suggested that genes, highly correlated with vaspin expression in adipose tissue, are enriched in lipid metabolic processes. Finally, in vivo vaspin treatment reduced serum triglycerides in obese db/db mice. Conclusions: The data show that serum vaspin is strongly determined by genetic variants within vaspin, which further highlight vaspin's causal role in lipid metabolism.
  •  
24.
  • Broadaway, K Alaine, et al. (författare)
  • Loci for insulin processing and secretion provide insight into type 2 diabetes risk.
  • 2023
  • Ingår i: American Journal of Human Genetics. - : Elsevier. - 0002-9297 .- 1537-6605. ; 110:2, s. 284-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
  •  
25.
  • Buzzetti, Raffaella, et al. (författare)
  • Management of latent autoimmune diabetes in adults : A consensus statement from an international expert panel
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:10, s. 2037-2047
  • Tidskriftsartikel (refereegranskat)abstract
    • A substantial proportion of patients with adult-onset diabetes share features of both type 1 diabetes (T1D) and type 2 diabetes (T2D). These individuals, at diagnosis, clinically resemble T2D patients by not requiring insulin treatment, yet they have immunogenetic markers associated with T1D. Such a slowly evolving form of autoimmune diabetes, described as latent autoimmune diabetes of adults (LADA), accounts for 2-12% of all patients with adult-onset diabetes, though they show considerable variability according to their demographics and mode of ascertainment. While therapeutic strategies aim for metabolic control and preservation of residual insulin secretory capacity, endotype heterogeneity within LADA implies a personalized approach to treatment. Faced with a paucity of large-scale clinical trials in LADA, an expert panel reviewed data and delineated one therapeutic approach. Building on the 2020 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) consensus for T2D and heterogeneity within autoimmune diabetes, we propose deviations for LADA from those guidelines. Within LADA, C-peptide values, proxy for b-cell function, drive therapeutic decisions. Three broad categories of random C-peptide levels were introduced by the panel: 1) C-peptide levels <0.3 nmol/L: A multiple-insulin regimen recommended as for T1D; 2) C-peptide values >0.3 and <0.7 nmol/L: Defined by the panel as a gray area in which a modified ADA/EASD algorithm for T2D is recommended; consider insulin in combination with other therapies to modulate β-cell failure and limit diabetic complications; 3) C-peptide values >0.7 nmol/L: Suggests a modified ADA/EASD algorithm as for T2D but allowing for the potentially progressive nature of LADA by monitoring C-peptide to adjust treatment. The panel concluded by advising general screening for LADA in newly diagnosed noninsulin-requiring diabetes and, importantly, that large randomized clinical trials are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 167
Typ av publikation
tidskriftsartikel (157)
konferensbidrag (6)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (166)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Tuomi, Tiinamaija (166)
Groop, Leif (135)
Isomaa, Bo (51)
Lyssenko, Valeriya (44)
Almgren, Peter (40)
Ahlqvist, Emma (34)
visa fler...
McCarthy, Mark I (30)
Tuomilehto, Jaakko (30)
Laakso, Markku (29)
Boehnke, Michael (26)
Mohlke, Karen L (24)
Altshuler, David (24)
Lindgren, Cecilia M. (24)
Florez, Jose C. (24)
Wareham, Nicholas J. (23)
Kuusisto, Johanna (23)
Jackson, Anne U. (23)
Nilsson, Peter (22)
Salomaa, Veikko (22)
Melander, Olle (22)
Hansen, Torben (21)
Langenberg, Claudia (20)
Barroso, Ines (20)
Prokopenko, Inga (20)
Frayling, Timothy M (20)
Collins, Francis S. (20)
Pedersen, Oluf (19)
Morris, Andrew P. (19)
Stringham, Heather M (19)
Lind, Lars (18)
Stefansson, Kari (18)
Hattersley, Andrew T (18)
Carlsson, Sofia (18)
Meigs, James B. (18)
Bonnycastle, Lori L. (18)
Grarup, Niels (17)
Thorleifsson, Gudmar (17)
Froguel, Philippe (17)
Loos, Ruth J F (17)
Grallert, Harald (17)
Palmer, Colin N. A. (16)
Scott, Laura J (16)
Ingelsson, Erik (15)
Thorsteinsdottir, Un ... (15)
Eriksson, Johan G. (15)
Morris, Andrew D (15)
Zeggini, Eleftheria (15)
Dupuis, Josée (15)
Voight, Benjamin F. (15)
Narisu, Narisu (15)
visa färre...
Lärosäte
Lunds universitet (162)
Karolinska Institutet (38)
Uppsala universitet (34)
Umeå universitet (15)
Göteborgs universitet (6)
Stockholms universitet (2)
visa fler...
Malmö universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (165)
Finska (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (164)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy