SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vallhagen O.) "

Sökning: WFRF:(Vallhagen O.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
3.
  •  
4.
  •  
5.
  • Ekmark, I., et al. (författare)
  • Fluid and kinetic studies of tokamak disruptions using Bayesian optimization
  • 2024
  • Ingår i: Journal of Plasma Physics. - : Cambridge University Press (CUP). - 0022-3778 .- 1469-7807. ; 90:3
  • Tidskriftsartikel (refereegranskat)abstract
    • When simulating runaway electron dynamics in tokamak disruptions, fluid models with lower numerical cost are often preferred to more accurate kinetic models. The aim of this work is to compare fluid and kinetic simulations of a large variety of different disruption scenarios in ITER. We consider both non-activated and activated scenarios; for the latter, we derive and implement kinetic sources for the Compton scattering and tritium beta decay runaway electron generation mechanisms in our simulation tool Dream (Hoppe et al., Comput. Phys. Commun., vol. 268, 2021, 108098). To achieve a diverse set of disruption scenarios, Bayesian optimization is used to explore a range of massive material injection densities for deuterium and neon. The cost function is designed to distinguish between successful and unsuccessful disruption mitigation based on the runaway current, current quench time and transported fraction of the heat loss. In the non-activated scenarios, we find that fluid and kinetic disruption simulations can have significantly different runaway electron dynamics, due to an overestimation of the runaway seed by the fluid model. The primary cause of this is that the fluid hot-tail generation model neglects superthermal electron transport losses during the thermal quench. In the activated scenarios, the fluid and kinetic models give similar predictions, which can be explained by the significant influence of the activated sources on the runaway dynamics and the seed.
  •  
6.
  • Vallhagen, O., et al. (författare)
  • Runaway electron dynamics in ITER disruptions with shattered pellet injections
  • 2024
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 64:8
  • Tidskriftsartikel (refereegranskat)abstract
    • This study systematically explores the parameter space of disruption mitigation through shattered pellet injection in ITER with a focus on runaway electron (RE) dynamics, using the disruption modeling tool Dream. The physics fidelity is considerably increased compared to previous studies, by e.g. using realistic magnetic geometry, resistive wall configuration, thermal quench onset criteria, as well as including additional effects, such as ion transport and enhanced RE transport during the thermal quench. The work aims to provide a fairly comprehensive coverage of experimentally feasible scenarios, considering plasmas representative of both non-activated and high-performance DT operation, different thermal quench onset criteria and transport levels, a wide range of hydrogen and neon quantities injected in one or two stages, and pellets with various characteristic shard sizes. Using a staggered injection scheme, with a pure hydrogen injection preceding a mixed hydrogen-neon injection, we find injection parameters leading to acceptable RE currents in all investigated discharges without activated runaway sources. Dividing the injection into two stages is found to significantly enhance the assimilation and minimize RE generation due to the hot-tail mechanism. However, while a staggered injection outperforms a single stage injection also in cases with radioactive RE sources, no cases with acceptable RE currents are found for a DT-plasma with a 15MA plasma current.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy