SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wallis Steven C) "

Sökning: WFRF:(Wallis Steven C)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Weinstein, John N., et al. (författare)
  • The cancer genome atlas pan-cancer analysis project
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:10, s. 1113-1120
  • Forskningsöversikt (refereegranskat)abstract
    • The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. © 2013 Nature America, Inc. All rights reserved.
  •  
2.
  • Dhanani, Jayesh A, et al. (författare)
  • A research pathway for the study of the delivery and disposition of nebulised antibiotics: an incremental approach from in vitro to large animal models
  • 2018
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Science and Business Media LLC. - 2197-425X. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nebulised antibiotics are frequently used for the prevention or treatment of ventilator-associated pneumonia. Many factors may influence pulmonary drug concentrations with inaccurate dosing schedules potentially leading to therapeutic failure and/or the emergence of antibiotic resistance. We describe a research pathway for studying the pharmacokinetics of a nebulised antibiotic during mechanical ventilation using in vitro methods and ovine models, using tobramycin as the study antibiotic.
  •  
3.
  • Dhanani, Jayesh A., et al. (författare)
  • Lung Pharmacokinetics of Tobramycin by Intravenous and Nebulized Dosing in a Mechanically Ventilated Healthy Ovine Model
  • 2019
  • Ingår i: Anesthesiology. - : LIPPINCOTT WILLIAMS & WILKINS. - 0003-3022 .- 1528-1175. ; 131:2, s. 344-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Editors PerspectiveWhat We Already Know about This Topic For most bacterial pneumonia, the lung interstitium is considered to be the site of infection, and adequate antibiotic concentrations are important for drug effect Despite systemic antibiotic therapy, therapeutic failure is common, perhaps due to poor lung penetration, and resulting low interstitial space fluid antibiotic concentrations Increasing systemic antibiotic doses in order to increase interstitial space fluid antibiotic concentrations could lead to toxicities such as nephrotoxicity What This Article Tells Us That Is New In a mechanically ventilated healthy large animal model, nebulized tobramycin produced higher peak lung interstitial space fluid concentrations, as well as higher initial epithelial lining fluid concentrations, with lower plasma concentrations than were observed after intravenous administration due to more extensive lung penetration Background: Nebulized antibiotics may be used to treat ventilator-associated pneumonia. In previous pharmacokinetic studies, lung interstitial space fluid concentrations have never been reported. The aim of the study was to compare intravenous and nebulized tobramycin concentrations in the lung interstitial space fluid, epithelial lining fluid, and plasma in mechanically ventilated sheep with healthy lungs. Methods: Ten anesthetized and mechanically ventilated healthy ewes underwent surgical insertion of microdialysis catheters in upper and lower lobes of both lungs and the jugular vein. Five ewes were given intravenous tobramycin 400 mg, and five were given nebulized tobramycin 400 mg. Microdialysis samples were collected every 20 min for 8 h. Bronchoalveolar lavage was performed at 1 and 6 h. Results: The peak lung interstitial space fluid concentrations were lower with intravenous tobramycin 20.2 mg/l (interquartile range, 12 mg/l, 26.2 mg/l) versus the nebulized route 48.3 mg/l (interquartile range, 8.7 mg/l, 513 mg/l), P = 0.002. For nebulized tobramycin, the median epithelial lining fluid concentrations were higher than the interstitial space fluid concentrations at 1 h (1,637; interquartile range, 650, 1,781, vs. 16 mg/l, interquartile range, 7, 86, P amp;lt; 0.001) and 6 h (48, interquartile range, 17, 93, vs. 4 mg/l, interquartile range, 2, 9, P amp;lt; 0.001). For intravenous tobramycin, the median epithelial lining fluid concentrations were lower than the interstitial space fluid concentrations at 1 h (0.19, interquartile range, 0.11, 0.31, vs. 18.5 mg/l, interquartile range, 9.8, 23.4, P amp;lt; 0.001) and 6 h (0.34, interquartile range, 0.2, 0.48, vs. 3.2 mg/l, interquartile range, 0.9, 4.4, P amp;lt; 0.001). Conclusions: Compared with intravenous tobramycin, nebulized tobramycin achieved higher lung interstitial fluid and epithelial lining fluid concentrations without increasing systemic concentrations.
  •  
4.
  • Dhanani, Jayesh A, et al. (författare)
  • Recovery rates of combination antibiotic therapy using in vitro microdialysis simulating in vivo conditions
  • 2018
  • Ingår i: Journal of pharmaceutical analysis. - : Elsevier BV. - 2214-0883 .- 2095-1779. ; 8:6, s. 407-412
  • Tidskriftsartikel (refereegranskat)abstract
    • Microdialysis is a technique used to measure the unbound antibiotic concentration in the interstitial spaces, the target site of action. In vitro recovery studies are essential to calibrating the microdialysis system for in vivo studies. The effect of a combination of antibiotics on recovery into microdialysate requires investigation. In vitro microdialysis recovery studies were conducted on a combination of vancomycin and tobramycin, in a simulated in vivo model. Comparison was made between recoveries for three different concentrations and three different perfusate flow rates. The overall relative recovery for vancomycin was lower than that of tobramycin. For tobramycin, a concentration of 20µg/mL and flow rate of 1.0µL/min had the best recovery. A concentration of 5.0µg/mL and flow rate of 1.0µL/min yielded maximal recovery for vancomycin. Large molecular size and higher protein binding resulted in lower relative recoveries for vancomycin. Perfusate flow rates and drug concentrations affected the relative recovery when a combination of vancomycin and tobramycin was tested. Low perfusate flow rates were associated with higher recovery rates. For combination antibiotic measurement which includes agents that are highly protein bound, in vitro studies performed prior to in vivo studies may ensure the reliable measurement of unbound concentrations.
  •  
5.
  •  
6.
  • Kong, Fabian Y. S., et al. (författare)
  • Optimisation of treatments for oral Neisseria gonorrhoeae infection : Pharmacokinetics Study (STI-PK project) - study protocol for non-randomised clinical trial
  • 2022
  • Ingår i: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 12:11
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Neisseria gonorrhoeae infections are common and incidence increasing. Oropharyngeal infections are associated with greater treatment failure compared with other sites and drive transmission to anogenital sites through saliva. Gonococcal resistance is increasing and new treatments are scarce, therefore, clinicians must optimise currently available and emerging treatments in order to have efficacious therapeutic options. This requires pharmacokinetic data from the oral cavity/oropharynx, however, availability of such information is currently limited.METHODS AND ANALYSIS: Healthy male volunteers (participants) recruited into the study will receive single doses of either ceftriaxone 1 g, cefixime 400 mg or ceftriaxone 500 mg plus 2 g azithromycin. Participants will provide samples at 6-8 time points (treatment regimen dependent) from four oral sites, two oral fluids, one anorectal swab and blood. Participants will complete online questionnaires about their medical history, sexual practices and any side effects experienced up to days 5-7. Saliva/oral mucosal pH and oral microbiome analysis will be undertaken. Bioanalysis will be conducted by liquid chromatography-mass spectrometry. Drug concentrations over time will be used to develop mathematical models for optimisation of drug dosing regimens and to estimate pharmacodynamic targets of efficacy.ETHICS AND DISSEMINATION: This study was approved by Royal Melbourne Hospital Human Research Ethics Committee (60370/MH-2021). The study results will be submitted for publication in peer-reviewed journals and reported at conferences. Summary results will be sent to participants requesting them. All data relevant to the study will be included in the article or uploaded as supplementary information.TRIAL REGISTRATION NUMBER: ACTRN12621000339853.
  •  
7.
  • Roberts, Jason A., et al. (författare)
  • Defining optimal dosing of ciprofloxacin in patients with septic shock
  • 2019
  • Ingår i: The Journal of antimicrobial chemotherapy. - : Oxford University Press (OUP). - 1460-2091 .- 0305-7453. ; 74:6, s. 1662-1669
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Patients with septic shock may undergo extensive physiological alterations that can alter antibiotic pharmacokinetics. OBJECTIVES: To describe the population pharmacokinetics of ciprofloxacin in septic shock and to define recommendations for effective ciprofloxacin dosing in these patients. METHODS: Adult patients with septic shock treated with ciprofloxacin were eligible for inclusion. Concentrations were measured by HPLC-MS/MS. Population pharmacokinetic modelling was performed with Monte Carlo simulations then used to define dosing regimens that optimize the PTA of an AUC/MIC ratio >125 for different MICs and fractional target attainment (FTA) of empirical and targeted therapy against Pseudomonas aeruginosa. RESULTS: We included 48 patients with median Simplified Acute Physiology Score (SAPS) II of 49 and 90 day mortality of 33%. Ciprofloxacin pharmacokinetics was best described by a two-compartment linear model including CLCR and body weight as covariates on CL and central volume respectively. With a dose of 400 mg q8h and CLCR of 80 mL/min, >95% PTA was achieved for bacteria with MICs ≤0.25 mg/L. For empirical treatment of P. aeruginosa, 600 mg q8h only reached a maximum of 68% FTA. For directed therapy against P. aeruginosa, a dose of 600 mg q8h was needed to achieve sufficient AUC/MIC ratios. CONCLUSIONS: In patients with septic shock, standard ciprofloxacin dosing achieved concentrations to successfully treat bacteria with MICs ≤0.25 mg/L and then only in patients with normal or reduced CLCR. To cover pathogens with higher MICs or in patients with augmented renal CL, doses may have to be increased.
  •  
8.
  • Sjövall, Fredrik, et al. (författare)
  • Maximally effective dosing regimens of meropenem in patients with septic shock
  • 2018
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 73:1, s. 191-198
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To use a population pharmacokinetic approach to define maximally effective meropenem dosing recommendations for treatment of Acinetobacter baumannii and Pseudomonas aeruginosa infections in a large cohort of patients with septic shock. Methods: Adult patients with septic shock and conserved renal function, treated with meropenem, were eligible for inclusion. Seven blood samples were collected during a single dosing interval and meropenem concentrations were measured by a validated HPLC-MS/MS method. Monte Carlo simulations were employed to define optimum dosing regimens for treatment of empirical or targeted therapy of A. baumannii and P. aeruginosa. EudraCT-no. 2014-002555-26 and NCT02240277. Results: Fifty patients were included, 26 male and 24 female, with a median age of 64 years with an all-cause 90 day mortality of 34%. A two-compartment linear model including creatinine clearance (CLCR) as a covariate best described meropenem pharmacokinetics. For empirical treatment of A. baumannii, 2000 mg/6 h was required by intermittent (30 min) or prolonged (3 h) infusion, whereas 6000 mg/day was required with continuous infusion. For P. aeruginosa, 2000 mg/8 h or 1000 mg/6 h was required for both empirical and targeted treatment. In patients with a CLCR of≤100 mL/min, successful concentration targets could be reached with intermittent dosing of 1000 mg/8 h. Conclusions: In patients with septic shock and possible augmented renal clearance, doses should be increased and/or administration should be performed by prolonged or continuous infusion to increase the likelihood of achieving therapeutic drug concentrations. In patients with normal renal function, however, standard dosing seems to be sufficient.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy