SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Whitney Barbara) "

Sökning: WFRF:(Whitney Barbara)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fedriani, Rubén, 1991, et al. (författare)
  • The SOFIA Massive (SOMA) Star Formation Survey. IV. Isolated Protostars
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 942:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present similar to 10-40 mu m SOFIA-FORCAST images of 11 isolated protostars as part of the SOFIA Massive (SOMA) Star Formation Survey, with this morphological classification based on 37 mu m imaging. We develop an automated method to define source aperture size using the gradient of its background-subtracted enclosed flux and apply this to build spectral energy distributions (SEDs). We fit the SEDs with radiative transfer models, developed within the framework of turbulent core accretion (TCA) theory, to estimate key protostellar properties. Here, we release the sedcreator python package that carries out these methods. The SEDs are generally well fitted by the TCA models, from which we infer initial core masses M ( c ) ranging from 20-430 M (circle dot), clump mass surface densities sigma(cl) similar to 0.3-1.7 g cm(-2), and current protostellar masses m (*) similar to 3-50 M (circle dot). From a uniform analysis of the 40 sources in the full SOMA survey to date, we find that massive protostars form across a wide range of clump mass surface density environments, placing constraints on theories that predict a minimum threshold sigma(cl) for massive star formation. However, the upper end of the m (*)-sigma(cl) distribution follows trends predicted by models of internal protostellar feedback that find greater star formation efficiency in higher sigma(cl) conditions. We also investigate protostellar far-IR variability by comparison with IRAS data, finding no significant variation over an similar to 40 yr baseline.
  •  
2.
  • Liu, Mengyao, et al. (författare)
  • The SOFIA Massive (SOMA) Star Formation Survey. II. High Luminosity Protostars
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 874:1
  • Forskningsöversikt (refereegranskat)abstract
    • We present multiwavelength images observed with SOFIA-FORCAST from similar to 10 to 40 mu m of seven high luminosity massive protostars, as part of the SOFIA Massive Star Formation Survey. Source morphologies at these wavelengths appear to be influenced by outflow cavities and extinction from dense gas surrounding the protostars. Using these images, we build spectral energy distributions (SEDs) of the protostars, also including archival data from Spitzer, Herschel, and other facilities. Radiative transfer (RT) models of Zhang & Tan, based on Turbulent Core Accretion theory, are then fit to the SEDs to estimate key properties of the protostars. Considering the best five models fit to each source, the protostars have masses m* similar to 12-64 M circle dot accreting at rates of m* similar to 10(-4) -10(-3) M circle dot yr(-1) inside cores of initial masses M-c similar to 100-500 M circle dot embedded in clumps with mass surface densities Sigma(cl) similar to 0.1-3 g cm(-2) and span a luminosity range of 10(4) -10(6) L circle dot. Compared with the first eight protostars in Paper I, the sources analyzed here are more luminous and, thus, likely to be more massive protostars. They are often in a clustered environment or have a companion protostar relatively nearby. From the range of parameter space of the models, we do not see any evidence that Sigma(cl) needs to be high to form these massive stars. For most sources, the RT models provide reasonable fits to the SEDs, though the cold clump material often influences the long wavelength fitting. However, for sources in very clustered environments, the model SEDs may not be such a good description of the data, indicating potential limitations of the models for these regions.
  •  
3.
  • Liu, Mengyao, et al. (författare)
  • The SOFIA Massive (SOMA) Star Formation Survey. III. From Intermediate- to High-mass Protostars
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 904:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present similar to 10-40 mm SOFIA-FORCAST images of 14 intermediate-mass protostar candidates as part of the SOFIA Massive (SOMA) Star Formation Survey. We build spectral energy distributions, also using archival Spitzer, Herschel, and IRAS data. We then fit the spectral energy distributions with radiative transfer models of Zhang & Tan, based on turbulent core accretion theory, to estimate key protostellar properties. With the addition of these intermediate-mass sources, based on average properties derived from SED fitting, SOMA protostars span luminosities from similar to 10(2) to 10(6) L-circle dot, current protostellar masses from similar to 0.5 to 35 M-circle dot, and ambient clump mass surface densities, Scl, from 0.1 to g cm(-2). A wide range of evolutionary states of the individual protostars and of the protocluster environments is also probed. We have also considered about 50 protostars identified in infrared dark clouds that are expected to be at the earliest stages of their evolution. With this global sample, most of the evolutionary stages of high- and intermediate-mass protostars are probed. The best-fitting models show no evidence that a threshold value of the protocluster clump mass surface density is required to form protostars up to similar to 25 M.. However, to form more massive protostars, there is tentative evidence that Sigma(cl) needs to be greater than or similar to 1 g cm(-2). We discuss how this is consistent with expectations from core accretion models that include internal feedback from the forming massive star.
  •  
4.
  •  
5.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy