SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L4X0:1654 1081 "

Search: L4X0:1654 1081

  • Result 1-50 of 425
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nordgren, Niklas, 1975- (author)
  • Probing Interactions between Bio-Fibre Components
  • 2007
  • Licentiate thesis (other academic/artistic)abstract
    • I den här avhandlingen har atomkrafts mikroskopi (AFM) och kvartskristall mikrovåg med dissipation (QCM-D) används för att undersöka interaktioner i bio-fiber modell system av cellulosa och xyloglukan (XG); en naturligt förekommande polysackarid viktig för tillväxt av träd och andra växter. Dessutom har det avgörande momentet av friktionskrafts-kalibrering studerats för att erhålla noggranna och kvantitativa resultat med kolloidal prob AFM. Fyra olika cellulosa modell ytor med varierande morfologi har utvärderats med kolloidal prob AFM. De normala ytkrafterna för alla undersökta substrat var kvalitativt likadana. Däremot, för en given ytråhet leder adsorption av XG till en konsekvent reduktion av friktions-koefficienterna för alla ytor, vilket antyder att effekten på friktion av antingen ytråhet eller kemi kan separeras. För att kunna undersöka interaktionen mellan enbart cellulosa och xyloglukan ändmodifierades först XG enzymatiskt med en tiol grupp. Dessa makromolekyler ympades sedan till guld, där de bildade ett tiol-bundet borst-liknande lager. QCM-D experiment bekräftade att det ympade lagret var biologiskt tillgängligt för enzymatisk nedbrytning genom användning av växtenzymet endo-xyloglukanas TmNXG1. Friktions-koefficienterna för den orörda ympningen och den enzymexponerade visade samma trend med ytråheten som i fallet med cellulosaytorna. Adhesions mätningar på denna modellyta visade att den ursprungliga specificiteten mellan xyloglukan och cellulosa bevarades. Ett antal AFM kantilevrar har kalibrerats med olika tekniker för att erhålla både normal- och friktionsfjäder-konstanter med mål att utvärdera den relativa noggrannheten mellan de olika metoderna. Överensstämmelsen var god mellan teknikerna för att bestämma fjäder konstanterna i normalled. Något högre avvikelse mellan teknikerna för att bestämma torsions fjäder konstanterna förekom. Men denna avvikelse leder inte till kvantitativt olika resultat och baserat på behändighet borde den termiska tekniken av Sader et al. tillämpas. Vidare har det viktiga momentet att kalibrera fotodetektorn behandlats, och en ny teknik föreslås för att bestämma detektor-känsligheten genom att kombinera olika metoder. Slutligen beräknades en konverterings faktor, som gör det möjligt att utföra kalibrering av kantilevern i luft, men att själva friktionsmätningen sedan kan utföras i vätska.
  •  
2.
  • Koklukaya, Oruc (author)
  • Flame-Retardant Cellulose Fibre/Fibril Based Materials via Layer-by-Layer Technique
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • According to an analysis conducted by the Swedish Chemicals Inspectorate in 2006, the approximate numbers of fire injuries per year in Sweden are 100 deaths, 700 major and 700 minor injuries.1 Observations also show that there has been an increase in the number of house fires during recent years. One possible explanation can be the increased use of plastics in the building industry and in furniture. The advantages of easy processing, light weight and low cost make plastic materials most prevalent in the market.  However, plastics behave significantly differently from natural materials in the case of fire. Polymeric materials, including rigid polyurethane foams (PU) which are widely used in the building industry due to their insulating properties, are highly flammable and they release heat at a very high rate. In addition, polymeric materials release more harmful smoke, toxic gases and combustion products than natural materials. A house fire typically starts with the ignition of a combustible material. Flames then spread to nearby materials and shortly thereafter the heat radiation generated reaches a point where the contents of the room suddenly and simultaneously ignite. This stage is called a flash over. After this stage, the fire is fully developed and it continues until everything is consumed. The higher rate of heat and smoke production from plastic materials reduces the time to flash over and hence the time to escape from a fire. The traditional flame-retardant treatments are based mainly on halogenated compounds which are classified as gas phase flame-retardants. The halogenated flame-retardants are under severe investigation due to their adverse effect on health and on the environment since they release toxic gases during combustion and they may leach out and accumulate in the food chain.2-3 The restrictions due to growing environmental concerns have been a driving force to develop alternative flame-retardants by using natural and renewable resources. In recent years, the layer-by-layer (LbL) technique has been used as a simple and versatile surface engineering technique to construct functional nanocoatings through the sequential adsorption of polyelectrolytes and charged nanoparticles in an effort to impart flame-retardant characteristics by inhibiting the combustion cycle.4-5 This thesis presents the physical modification of cellulose fibre/fibril based materials as a means of improving flame-retardant properties.In the first part of work described in this thesis, the adsorption of polyelectrolyte multilayers onto pulp fibres was investigated as a way to impart flame-retardant characteristics to paper-based materials. It was found that intumescent nanocoatings consisting of nitrogen and phosphorus containing polyelectrolytes such as chitosan (CH) and poly(vinylphosphonic acid) (PVPA) were able to significantly improve the thermal stability and flame-retardant properties of sheets made of LbL-treated fibres, and were able to self-extinguish the flame in the horizontal flame test (HFT). High magnification images revealed that this improvement in flame-retardancy was due to the formation of a coherent char layer on the fibres (Paper I).6 In addition to imparting flame-retardancy by the LbL-coating of polyethylenimine (PEI) and sodium hexametaphosphate (SHMP), it was also possible to improve the mechanical properties of the paper material with this treatment (Paper III).7In the second part of the work, wet-stable porous cellulose fibril-based aerogels were developed by freeze-drying and used as a template for the build-up of intumescent nano-brick wall assemblies. The formation of multilayers of CH, PVPA and montmorillonite clay (MMT) was investigated as a function of solution concentration, and it was found that five quadlayers (QL) of CH/PVPA/CH/MMT treated aerogels using 5 g/L solutions of the respective components were able to self-extinguish the flame in HFT and that they showed no ignition under the heat flux of 35 kW/m2 used in cone calorimetry (Paper II).8 In a different application, a novel low density, porous, wet-stable cellulose fibre network was developed using chemically modified cellulose fibres by solvent exchange from water to acetone followed by drying at room temperature. The fibre networks (FN) were modified using the LbL technique to construct a flame-retardant nanocoating consisting of CH, SHMP, and inorganic particles (i.e., MMT, sepiolite (SEP), and colloidal silica (SNP)). The influence of the shape of the nanoparticles on flame-retardancy was investigated and it was found that plate-like and rod-like clays with a high aspect ratio showed self-extinguishing behaviour in HFT. A 5 QL of CH/SHMP/CH/SEP reduced the peak heat release rate and total smoke release by 47% and 43%, respectively, with an addition of only ~8 wt% to FN (Paper IV).Finally, non-crystalline cellulose gel beads were used as a substrate for the LbL assembly of CH and SHMP in model studies aimed at identifying the molecular mechanisms responsible for the fire-retardant properties of the LbL structures. The beads were formed by precipitating the dissolved cellulose-rich fibres according to an earlier described procedure,9 and it was shown that these smooth cellulose beads can be utilized as a model substrate to study the influence of LbL chemistry and nanostructure on flame-retardancy. These new types of model systems thus constitute a new important tool for clarifying the mechanism behind flame-retardant nanocoating systems (Paper V).  
  •  
3.
  • Ahmadi Svensson, Mozhgan (author)
  • Sampling and Analysis of Tars by Means of Photo Ionization Detection and Solid Phase Micro Extraction
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • Gasification of biomass will likely play an important role in the production of energy and chemicals in a future sustainable society. However, during gasification impurities, such as tars, will be formed. Tars may cause fouling and blockages of equipment downstream the gasifier. It is therefore important to minimize the formation of tars, alternatively to remove the formed tars. These processes need to be monitored, which makes it necessary to develop tar analysis methods suitable for this task.This work describes the development of two tar analysis methods, an on-line method based on a photoionization detector (PID) and an off-line method based on solid phase microextraction (SPME). Both methods were successfully validated against the established solid phase adsorption (SPA) method.The method based on PID was shown to have a very fast response time. Furthermore, the PID method is selective towards tar, but only limited information will be obtained regarding the composition of the tar compounds. The PID method is suitable for applications where it is important to detect fast changes of the tar concentration, i.e. process monitoring.The SPME method was shown to be a very sensitive method for qualitative and quantitative tar analysis. The sampling temperature was shown to be crucial for obtaining analysis results with the wanted detection limit. The SPME method is suitable for applications where extremely low detection and quantification limits are needed, i.e. for syngas production. 
  •  
4.
  • Akhlaghi, Shahin (author)
  • Degradation of acrylonitrile butadiene rubber and fluoroelastomers in rapeseed biodiesel and hydrogenated vegetable oil
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Biodiesel and hydrotreated vegetable oil (HVO) are currently viewed by the transportation sector as the most viable alternative fuels to replace petroleum-based fuels. The use of biodiesel has, however, been limited by the deteriorative effect of biodiesel on rubber parts in automobile fuel systems. This work therefore aimed at investigating the degradation of acrylonitrile butadiene rubber (NBR) and fluoroelastomers (FKM) on exposure to biodiesel and HVO at different temperatures and oxygen concentrations in an automated ageing equipment and a high-pressure autoclave. The oxidation of biodiesel at 80 °C was promoted by an increase in the oxygen partial pressure, resulting in the formation of larger amounts of hydroperoxides and acids in the fuel. The fatty acid methyl esters of the biodiesel oxidized less at 150 °C on autoclave aging, because the termination reactions between alkyl and alkylperoxyl radicals dominated over the initiation reactions. HVO consists of saturated hydrocarbons, and remained intact during the exposure. The NBR absorbed a large amount of biodiesel due to fuel-driven internal cavitation in the rubber, and the uptake increased with increasing oxygen partial pressure due to the increase in concentration of oxidation products of the biodiesel. The absence of a tan δ peak (dynamical mechanical measurements) of the bound rubber and the appearance of carbon black particles devoid of rubber suggested that the cavitation was caused by the detachment of bound rubber from particle surfaces. A significant decrease in the strain-at-break and in the Payne-effect amplitude of NBR exposed to biodiesel was explained as being due to the damage caused by biodiesel to the rubber-carbon-black network. During the high-temperature autoclave ageing, the NBR swelled less in biodiesel, and showed a small decrease in the strain-at-break due to the cleavage of rubber chains. The degradation of NBR in the absence of carbon black was due only to biodiesel-promoted oxidative crosslinking. The zinc cations released by the dissolution of zinc oxide particles in biodiesel promoted reduction reactions in the acrylonitrile part of the NBR. Heat-treated star-shaped ZnO particles dissolved more slowly in biodiesel than the commercial ZnO nanoparticles due to the elimination of inter-particle porosity by heat treatment. The fuel sorption was hindered in HVO-exposed NBR by the steric constraints of the bulky HVO molecules. The extensibility of NBR decreased only slightly after exposure to HVO, due to the migration of plasticizer from the rubber. The bisphenol-cured FKM co- and terpolymer swelled more than the peroxide-cured GFLT-type FKM in biodiesel due to the chain cleavage caused by the attack of biodiesel on the double bonds formed during the bisphenol curing. The FKM rubbers absorbed biodiesel faster, and to a greater extent, with increasing oxygen concentration. It is suggested that the extensive biodiesel uptake and the decrease in the strain-at-break and Young’s modulus of the FKM terpolymer was due to dehydrofluorination of the rubber by the coordination complexes of biodiesel and magnesium oxide and calcium hydroxide particles. An increase in the CH2-concentration of the extracted FKM rubbers suggested that biodiesel was grafted onto the FKM at the unsaturated sites resulting from dehydrofluorination.
  •  
5.
  • Alin, Jonas (author)
  • Microwave heating effects on degradation and migration of additives from polypropylene packaging
  • 2011
  • Licentiate thesis (other academic/artistic)abstract
    • The effect of different food types, polymer qualities and microwaves on the overall and specific migration during microwave heating of plastic packaging was investigated to better understand the packaging-food interactions and the effect of microwaves on food packaging. This work focuses on the migration of chemical compounds to food simulants from commercially available polypropylene packages. Packages used were made of polypropylene homopolymer (PP), co-polymer (PP-C) and random co-polymer (PP-R). Polymers matrix changes were monitored by following possible changes in crystallinity after microwave heating. Antioxidants Irgafos 168 and Irganox 1010 were present in all the three PP packages. Other volatiles, primarily degradation products of antioxidants, were also detected and identified in the unaged packages. Significant antioxidant degradation took place during microwave heating of the packages in the fatty food simulants 90/10 isooctane/ethanol and ethanol resulting in the formation and migration of degradation products while no degradation of antioxidants was detected during conventional heating of the packages in the fatty food simulants. Antioxidant Irgafos 168 and Irganox 1010 migration rates were otherwise similar during microwave heating as during conventional heating to the fatty food simulants and antioxidant diffusion coefficients were similar to earlier established values obtained during conventional heating. Antioxidant migration rates from the three polymers to fatty food simulants differed largely with respect to PP type and increased with decreasing degree of crystallinity in the materials, PP-R showing the highest migration rate. Swelling in isooctane food simulant caused the antioxidant diffusion coefficients to increase by factors of 100-1000 at 80 ºC and decreased the temperature dependence of antioxidant migration. It also increased the overall migration to above established overall migration limits during both microwave and conventional heating. Electrospray ionization mass spectrometry (ESI-MS) was shown to be a valuable new tool for additive migration analysis of compounds not detectable by HPLC or GC-MS.
  •  
6.
  • Alipour, Nazanin, 1978- (author)
  • Structure and Mechanical/Transport properties of Single and Multilayer Polyethylene-based Materials
  • 2014
  • Licentiate thesis (other academic/artistic)abstract
    • The current study discusses the structure, mechanical and transport properties of polyethylene-based materials into two parts. The first part deals with the migration and chemical depletion of active substance such as insecticides from moulded polyethylene sheets. Deltamethrin (DM) and synergist piperonyl butoxide (PBO) are often used for insect control purpose. It was found that DM as a powder was incapable of recrystallization and remained in liquid state after cooling to room temperature, and that the evaporation of a DM/PBO solution was greater than that predicted from the evaporation rates of pristine separate material components. Infrared spectroscopy and liquid chromatography showed that the loss of DM and PBO through polyethylene sheets was negligible over 30 days, when aged in air at 80 °C (60 and 80 %RH). However, significant migration of the active species was observed in aged polyethylene sheets which were exposed in liquid water (at 80 and 95 °C). In the second part, the structure and properties of multi–layered polymer films were studied in terms of crystallization kinetics, mechanical and transport properties. Previously, it has been shown that when the layer thickness decreases from micrometre-scale to nanometre-scale, leading to improvement of the film performance such as crack propagation and oxygen barrier properties. In this work, two multi-layered systems were considered based on compatible (i) or incompatible layers (ii). In the first case (i), metallocene polyethylene (mPE) and low-density polyethylene (LDPE) where investigated as 2, 24, and 288 adjacent layers. In the second case (ii) poly(ethylene-co-vinyl alcohol) (EVOH) and polyethylene adhesive was evaluated as 5 and 19 layers. The crystallization kinetic studies showed that the crystallization rate was retarded as the layers became thinner with increasing number of layers in the multi-layered films as compared to the reference films (2 and 5 layers). The observation was suggested to stem from greater association between layers (inter layer mixing) in the case of mPE/LDPE films with 2 layers. Furthermore, the crack growth resistance increased with increasing number of layers. The x-ray scattering and tensile testing showed that the films were orientated more in extrusion direction than in the transverse direction, besides the EVOH films (the incompatible system) showed higher orientation in the extrusion direction than mPE/LDPE films. The uptake of n-hexane was reduced significantly in multi-layered EVOH films due to the effective protective role of EVOH. Furthermore, it was revealed that non-homogenous swelling causing a folding/curling of bilayer films when exposed to the vapour of the solvent.
  •  
7.
  • Alipour, Yousef, 1979- (author)
  • Furnace Wall Corrosion in a Wood-fired Boiler
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • The use of renewable wood-based fuel has been increasing in the last few decades because it is said to be carbon neutral. However, wood-based fuel, and especially used wood (also known as recycled wood or waste wood), is more corrosive than virgin wood (forest fuel), because of higher amounts of chlorine and heavy metals. These elements increase the corrosion problems at the furnace walls where the oxygen level is low.Corrosion mechanisms are usually investigated at the superheaters where the temperature of the material and the oxygen level is higher than at the furnace walls.  Much less work has been performed on furnace wall corrosion in wood or used wood fired boilers, which is the reason for this project.    Tests are also mostly performed under simplified conditions in laboratories, making the results easier to interpret.  In power plants the interpretation is more complicated. Difficulties in the study of corrosion processes are caused by several factors such as deposit composition, flue gas composition, boiler design, and combustion characteristics and so on. Therefore, the laboratory tests should be a complement to the field test ones. This doctoral project involved in-situ testing at the furnace wall of power boilers and may thus contribute to fill the gap.The base material for furnace walls is a low alloy steel, usually 16Mo3, and the tubes may be coated or uncoated. Therefore tests were performed both on 16Mo3 and more highly alloyed materials suitable for protective coatings.Different types of samples exposed in used-wood fired boilers were analysed by different techniques such as LOM (light optical microscopy), XRD (X-ray diffraction), SEM (scanning electron microscopy), EDS (energy dispersive spectroscopy), WDS (wavelength dispersive spectroscopy), FIB (focused ion beam) and GD-OES (glow discharge optical emission spectroscopy). The corrosion rate was measured. The environment was also thermodynamically modelled by TC (Thermo-Calc ®).The results showed that 16Mo3 in the furnace wall region is attacked by HCl, leading to the formation of iron chloride and a simultaneous oxidation of the iron chloride. The iron chloride layer appeared to reach a steady state thickness.  Long term exposures showed that A 625 (nickel chromium alloy) and Kanthal APMT (iron-chromium-aluminium alloy) had the lowest corrosion rate (about 25-30% of the rate for 16Mo3), closely followed by 310S (stainless steel), making these alloys suitable for coating materials. It was found that the different alloys were attacked by different species, although they were exposed in the boiler at the same time in the same place. The dominant corrosion process in the A 625 samples seemed to be by a potassium-lead combination, while lead did not attack the APMT samples. Potassium attacked the alumina layer in the APMT samples, leading to the formation of a low-protective aluminate and chlorine was found to attack the base material.  The results showed that stainless steels are attacked by both mechanisms (Cl- induced attack and K-Pb combination).Decreasing the temperature of the furnace walls of a waste wood fired boiler could decrease the corrosion rate of 16Mo3. However, this low corrosion rate corresponds to a low final steam pressure of the power plant, which in not beneficial for the electrical efficiency.The short term testing results showed that co-firing of sewage sludge with used wood can lead to a reduction in the deposition of K and Cl on the furnace wall during short term testing. This led to corrosion reduction of furnace wall materials and coatings. The alkali chlorides could react with the aluminosilicates in the sludge and be converted to alkali silicates. The chromia layer in A 625 and alumina in APMT were maintained with the addition of sludge. 
  •  
8.
  • Alipour, Yousef (author)
  • High temperature corrosion in a biomass-fired power boiler : Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam data
  • 2013
  • Licentiate thesis (other academic/artistic)abstract
    • The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel.A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are made of ferritic low-alloyed steels, due to their low price, low stress corrosion cracking risk, high heat transfer properties and low thermal expansion. However, ferritic low alloy steels corrode quickly when burning waste wood in a low NOx environment (i.e. an environment with low oxygen levels to limit the formation of NOx). Apart from pure oxidation two important forms of corrosion mechanisms are thought to occur in waste environments: chlorine corrosion and alkali corrosion.Although there is a great interest from plant owners to reduce the costs associated with furnace wall corrosion very little has been reported on wall corrosion in biomass boilers. Also corrosion mechanisms on furnace walls are usually investigated in laboratories, where interpretation of the results is easier. In power plants the interpretation is more complicated. Difficulties in the study of corrosion mechanisms are caused by several factors such as deposit composition, flue gas flow, boiler design, combustion characteristics and flue gas composition. Therefore, the corrosion varies from plant to plant and the laboratory experiments should be complemented with field tests. The present project may thus contribute to fill the power plant corrosion research gap.In this work, different kinds of samples (wall deposits, test panel tubes and corrosion probes) from Vattenfall’s Heat and Power plant in Nyköping were analysed. Coated and uncoated samples with different alloys and different times of exposure were studied by scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), X-ray diffraction (XRD) and light optical microscopy (LOM). The corrosive environment was also simulated by Thermo-Calc software.The results showed that a nickel alloy coating can dramatically reduce the corrosion rate. The corrosion rate of the low alloy steel tubes, steel 16Mo3, was linear and the oxide scale non-protective, but the corrosion rate of the nickel-based alloy was probably parabolic and the oxide much more protective. The nickel alloy and stainless steels showed good corrosion protection behavior in the boiler. This indicates that stainless steels could be a good (and less expensive) alternative to nickel-based alloys for protecting furnace walls.The nickel alloy coated tubes (and probe samples) were attacked by a potassium-lead combination leading to the formation of non-protective potassium lead chromate. The low alloy steel tubes corroded by chloride attack. Stainless steels were attacked by a combination of chlorides and potassium-lead.The Thermo-Calc modelling showed chlorine gas exists at extremely low levels (less than 0.1 ppm) at the tube surface; instead the hydrated form is thermodynamically favoured, i.e. gaseous hydrogen chloride. Consequently chlorine can attack low alloy steels by gaseous hydrogen chloride rather than chlorine gas as previously proposed. This is a smaller molecule than chlorine which could easily diffuse through a defect oxide of the type formed on the steel.
  •  
9.
  • Almgren, Karin M., 1980- (author)
  • Wood-fibre composites : Stress transfer and hygroexpansion
  • 2010
  • Doctoral thesis (other academic/artistic)abstract
    • Wood fibres is a type of natural fibres suitable for composite applications. The abundance of wood in Swedish forests makes wood-fibre composites a new and interesting application for the Swedish pulp and paper industry. For large scale production of composites reinforced by wood fibres to be realized, the mechanical properties of the materials have to be optimized. Furthermore, the negative effects of moisture, such as softening, creep and degradation, have to be limited. A better understanding of how design parameters such as choice of fibres and matrix material, fibre modifications and fibre orientation distribution affect the properties of the resulting composite material would help the development of wood-fibre composites. In this thesis, focus has been on the fibre-matrix interface, wood-fibre hygroexpansion and resulting mechanical properties of the composite. The importance of an efficient fibre-matrix interface for composite properties is well known, but the determination of interface properties in wood-fibre composites is difficult due to the miniscule dimensions of the fibres. This is a problem also when hygroexpansion of wood fibres is investigated. Instead of tedious single-fibre tests, more straightforward, macroscopic approaches are suggested. Halpin-Tsai’s micromechanical models and laminate analogy were used to attain efficient interface characteristics of a wood-fibre composite. When Halpin-Tsai’s model was replaced by Hashin’s concentric cylinder assembly model, a value of an interface parameter could be derived from dynamic mechanical analysis. A micromechanical model developed by Hashin was used also to identify the coefficient of hygroexpansion of wood fibres. Measurements of thickness swelling of wood-fibre composites were performed. Back-calculation through laminate analogy and the micromechanical model made it possible to estimate the wood-fibre coefficient of hygroexpansion. Through these back-calculation procedures, information of fibre and interface properties can be gained for ranking of e.g. fibre types and modifications. Dynamic FT-IR (Fourier Transform Infrared) spectroscopy was investigated as a tool for interface characterization at the molecular level. The effects of relative humidity in the test chamber on the IR spectra were studied. The elastic response of the matrix material increased relative to the motion of the reinforcing cellulose backbone. This could be understood as a stress transfer from fibres to matrix when moisture was introduced to the system, e.g. as a consequence of reduced interface efficiency in the moist environment. The method is still qualitative and further development is potentially very useful to measure stress redistribution on the molecular level.
  •  
10.
  • Álvarez-Asencio, Rubén, 1978- (author)
  • Nanotribology, Surface Interactions and Characterization : An AFM Study
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • When two surfaces achieve contact, then contact phenomena such as adhesion, friction and wear can occur, which are of great interest in many disciplines, including physics, physical chemistry, material chemistry, and life and health sciences. These phenomena are largely determined by the nature and magnitude of the surface forces such as van der Waals, capillary and hydration forces. Moreover these forces are length-dependent, and therefore when the system scales down, their contribution scales up, dominating the interaction between the surfaces.A goal of my PhD work was to investigate fundamental contact phenomena in terms of the surface forces that regulate their properties. The primary tool applied in this PhD thesis work has been the atomic force microscopy (AFM), which (with all of its sub-techniques) offers the possibility to study such forces with high resolution virtually between all types of materials and intervening media. Therefore, in this work it was possible to study the long ranged interactions presented in air between different industrially relevant materials and how these interactions are shielded when the systems are immersed in an ionic liquid.Also investigated was the influence of microstructure on the tribological properties of metal alloys, where their good tribological properties were related with the vanadium and nitrogen contents for a FeCrVN tool alloy and with the chromium content for a biomedical CoCrMo alloy. Moreover, the effect of the intervening media can significantly affect the surface properties, and when the biomedical CoCrMo alloy was immersed in phosphate buffer saline solution (PBS), repulsive hydration forces decreased the friction coefficient and contact adhesion. On the other hand, with the immersion of the FeCrVN tool alloy in the NaCl solution, small particles displaying low adhesion were generated in specific regions on the surface with low chromium content. These particles are assumed to be related to a prepitting corrosion event in the tool alloy.The mechanical properties of stratum corneum (SC), which is the outermost layer of the skin, were also studied in this work. The SC presents a highly elastic, but stiff surface where the mechanical properties depend on the nanoscale. A novel probe has been designed with a single hair fibre in order to  understand how the skin deforms locally in response to the interaction with such a fibre probe. This study revealed that is mostly the lateral scale of the deformation which determines the mechanical properties of the SC.Finally, important achievements in this work are the developments of two new techniques - tribological property mapping and the Hybrid method for torsional spring constant evaluation. Tribological property mapping is an AFM technique that provides friction coefficient and contact adhesion maps with information attributed to the surface microstructure. The Hybrid method is an approach that was originally required to obtain the torsional spring constants for rigid beam shaped cantilevers, which could not be previously determined from their power torsional thermal spectra (conventional method). However, the applicability is shown to be general and this simple method can be used to obtain torsional spring constants for any type of beam shape cantilever. 
  •  
11.
  • Aminlashgari, Nina, 1984- (author)
  • LDI-MS strategies for analysis of polymer degradation products, additives and drugs
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • The advancement of mass spectrometry (MS) has been and continues to be a prominent analytical technique for highly accurate determination of analytes. The goal of this thesis was to develop new laser desorption ionization-mass spectrometric (LDI-MS) methods for analysis of polymer degradation products, additives and drugs. Modifications in the sample preparation were evaluated in the presence and absence of surface assisting materials. Various nanoparticles were evaluated as effective absorbents for energy transfer in the LDI procedure of the small molecules.In paper I and II, LDI-MS methods were developed for following the progression of chemical reactions. First, the procedure to optimize microwave assisted hydrothermal degradation products of cellulose were analyzed; second, the synthesis of glucose hexanoate ester plasticizers was monitored as a function of reaction time. The LDI-MS method provided rapid detection for the elucidation of the chemical products and their relative ratios. In contrast, the electrospray ionization-mass spectrometry (ESI-MS) analysis produced a noisy spectrum primarily containing peaks from salt clusters. A surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) method was developed in paper III enabling the identification of poly(e-caprolactone) and its degradation products by using nanoparticles as the substrate. Similar analysis by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) was not as successful due to convolution of the analyte peaks with clusters released from the matrix. ESI-MS analysis verified the SALDI-MS method as comparable degradation product patterns were observed. Furthermore, the possibility of using polylactide based nanocomposites as surfaces in the analysis of drugs was evaluated in paper IV. An advantage was the ease of handling compared to the use of free nanoparticles. Paper V introduces the potential of direct examination of oxygen plasma modified parylene C surfaces by a LDI-MS methodology. 
  •  
12.
  • Aminlashgari, Nina, 1986- (author)
  • SALDI-MS Method Development for Analysis of Pharmaceuticals and Polymer Degradation Products
  • 2012
  • Licentiate thesis (other academic/artistic)abstract
    • Surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) was evaluated as a new tool for analysis of polymer degradation products. A SALDI method was developed enabling rapid analysis of low molecular mass polyesters and their degradation products. In addition, the possibility to utilize nanocomposite films as easy-to-handle surfaces for analysis of pharmaceutical compounds was investigated. Poly(ε-caprolactone) was used as a model compound for SALDI-MS method development. The signal-to-noise values obtained by SALDI-MS were 20 times higher compared to traditional matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) of the same samples with 2,5-dihydroxybenzoic acid as a matrix. Halloysite nanoclay and magnesium oxide showed best potential as surfaces and clean backgrounds in the low mass range were observed. The SALDI-MS method for the analysis of polyester degradation products was also verified by electrospray ionization-mass spectrometry (ESI-MS). An advantage over ESI-MS is the possibility to directly analyze degradation products in buffer solutions. Compared to gas chromatography-mass spectrometry (GC-MS) it is possible to analyze polar compounds and larger molecular mass ranges at the same time as  complicated extraction steps are avoided. The possibility to use nanocomposite films as surfaces instead of free nanoparticles was evaluated by solution casting of poly(lactide) (PLA) films with eight inorganic nanoparticles. The S/N values of the pharmaceutical compounds, acebutolol, propranolol and carbamazepine, analyzed on the nanocomposite surfaces were higher than the values obtained on the surface of plain PLA showing that the nanoparticles participated in the ionization/desorption process even when they are immobilized. Beside the ease of handling, the risk for instrument contamination is reduced when nanocomposites are used instead of free nanoparticles. The signal intensities depended on the type of drug, type and concentration of nanoparticle. PLA with 10 % titanium oxide or 10 % silicon nitride functioned best as SALDI-MS surfaces.
  •  
13.
  • An, Junxue (author)
  • Polymers in Aqueous Lubrication
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • The main objective of this thesis work was to gain understanding of the layer properties and polymer structures that were able to aid lubrication in aqueous media. To this end, three types of polyelectrolytes: a diblock copolymer, a train-of-brushes and two brush-with-anchor mucins have been utilized. Their lubrication ability in the boundary lubrication regime has been examined by Atomic Force Microscopy with colloidal probe. The interfacial behavior of the thermoresponsive diblock copolymer, PIPOZ60-b-PAMPTAM17,on silica was studied in the temperature interval 25-50 ˚C. The main finding is that adsorption hysteresis, due to the presence of trapped states, is important when the adsorbed layers are in contact with a dilute polymer solution. The importance of trapped states was also demonstrated in the measured friction forces, where significantly lower friction forces, at a given temperature, were encountered on cooling than on the preceding heating stage, which was attributed to increased adsorbed amount. On the heating stage the friction force decreased with increasing temperature despite the worsening of the solvent condition, and the opposite trend was observed when using pre-adsorbed layers (constant adsorbed amount) as a consequence of increased segment-segment attraction.The second part of the studies was devoted to the interfacial properties of mucins on PMMA. The strong affinity provided by the anchoring group of C-PSLex and C-P55 together with their more extended layer structure contribute to the superior lubrication of PMMA compared to BSM up to pressures of 8-9 MPa. This is a result of minor bridging and lateral motion of molecules along the surface during shearing. We further studied the influence of glycosylation on interfacial properties of mucin by utilizing the highly purified mucins, C-P55 and C-PSLex. Our data suggest that the longer and more branched carbohydrate side chains on C-PSLex provide lower interpenetration and better hydration lubrication at low loads compared to the shorter carbohydrate chains on C-P55. However, the longer carbohydrates appear to counteract disentanglement less efficiently, giving rise to a higher friction force at high loads.
  •  
14.
  • Andersson, Robert (author)
  • Catalytic conversion of syngas to higher alcohols over MoS2-based catalysts
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • The present thesis concerns catalytic conversion of syngas (H2+ CO) into a blend of methanol and higher alcohols, an attractive way of producing fuels and chemicals. This route has the potential to reduce the oil dependence in the transport sector and, with the use of biomass for the syngas generation, produce CO2-neutral fuels.Alkali promoted MoS2-based catalysts show a high selectivity to higher alcohols, while at the same time being coke resistant, sulfur tolerant and displaying high water-gas shift activity. This makes this type of catalyst especially suitable for being used with syngas derived from biomass or coal which typically has a low H2/CO-ratio.This thesis discusses various important aspects of higher alcohol synthesis using MoS2-based catalysts and is a summary of four scientific papers. The first part of the thesis gives an introduction to how syngas can be produced and converted into different fuels and chemicals. It is followed by an overview of higher alcohol synthesis and a description of MoS2-based catalysts. The topic alcohol for use in internal combustion engines ends the first part of the thesis.In the second part, the experimental part, the preparation of the MoS2-based catalysts and the characterization of them are handled. After describing the high-pressure alcohol reactor setup, the development of an on-line gas chromatographic system for higher alcohol synthesis with MoS2 catalysts is covered (Paper I). This method makes activity and selectivity studies of higher alcohol synthesis catalysts more accurate and detailed but also faster and easier. Virtually all products are very well separated and the established carbon material balance over the reactor closed well under all tested conditions. The method of trace level sulfur analysis is additionally described.Then the effect of operating conditions, space velocity and temperature on product distribution is highlighted (Paper II). It is shown that product selectivity is closely correlated with the CO conversion level and why it is difficult to combine both a high single pass conversion and high alcohol selectivity over this catalyst type. Correlations between formed products and formation pathways are additionally described and discussed. The CO2 pressure in the reactor increases as the CO conversion increases, however, CO2 influence on formation rates and product distribution is to a great extent unclear. By using a CO2-containing syngas feed the effect of CO2 was studied (Paper III).An often emphasized asset of MoS2-based catalysts is their sulfur tolerance. However, the use of sulfur-containing feed and/or catalyst potentially can lead to incorporation of unwanted organic sulfur compounds in the product. The last topic in this thesis covers the sulfur compounds produced and how their quantity is changed when the feed syngas contains H2S (Paper IV). The effect on catalyst activity and selectivity in the presence of H2S in the feed is also covered.
  •  
15.
  • Andersson, Rasmus (author)
  • Evaluation of two hydrocyclone designs for pulp fractionation
  • 2010
  • Licentiate thesis (other academic/artistic)abstract
    • The process conditions and fractionation efficiency of two hydrocyclone designs, a novel and a conventional conical design, were evaluated. The novel design comprised a modified inlet section, where the pulp suspension had to pass a narrow ring-shaped opening, and a very compact fractionation zone. The influence of feed concentration and fine fraction mass ratio was studied. The trials were performed with never-dried, unrefined bleached chemical softwood pulp. Fractionation efficiency was evaluated in terms of change of surface roughness of handsheets made out of the fractions and the feed pulp respectively.The fractionation efficiency increased considerably with decreasing fine fraction mass ratio, especially at higher feed concentrations. This finding prompted a hypothesis on the existence of a radial gradient in the composition of the suspension inside the novel hydrocyclone. Using the novel hydrocyclone in a feed-forward fractionation system would therefore prove to be more favourable as a larger total fine fraction of better properties can be obtained. A three-stage feed-forward fractionation system was evaluated in laboratory scale. Here, it was indeed possible to extract fine fractions with improved surface properties in each of the three consecutive stages. All three fine fractions had about the same surface roughness.The fractionation performance of the novel design was benchmarked against that of a conventional, best available technology (BAT) design. In terms of fractionation efficiency, the BAT design performed better. However, the fractions produced with the novel hydrocyclone had a much smaller difference in concentration, implying a much less pronounced enrichment of fines in the fine fraction. It is unclear, to what extent the lower share of latewood fibres and the increased fines content, respectively, contributed to the improved surface roughness of the fine fractions. However, it is clear that the lower enrichment of fines in the novel hydrocyclone makes it easier to install it in industrial applications without a need for auxiliary equipment to redistribute large water flows. 
  •  
16.
  •  
17.
  •  
18.
  • Andersson, Samir, 1976- (author)
  • Supramolecular chemistry based on redox-active components and cucurbit[n]urils
  • 2010
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis describes the host-guest chemistry between Cucurbit[7]uril (CB[7]) and CB[8] and a series of guests including bispyridinium cations, phenols and  napthalenes. These guests are bound to ruthenium polypyridine complexes or ruthenium based water oxidation catalysts (WOCs). The investigations are based upon utilizing the covalently linked photosensitizer and the electronic effects and chemical processes are investigated.
  •  
19.
  •  
20.
  • Andrén, Oliver, 1987- (author)
  • Exploring bis-MPA Based Dendritic Structures in Biomedicine
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • In the last decades there has been significant advances in polymer chemistry. New coupling chemistries, polymerization techniques and accelerated approaches enable researches to push the limits of structural control. One outcome of such development is the field of linear dendritic (LD) and dendritic linear dendritic (DLD) hybrid materials, drawing benefit from both linear and dendritic material properties. LD-hybrids with their high density of functional groups and customizability offer much promise for use in biological applications. This thesis deals with the potential use of sophisticated LD-hybrid materials focusing on the field of biomedicine and biomedical applications. The linear component is manly poly(ethylene glycol) (PEG) while the dendritic part consists of 2,2-Bis(hydroxymethyl)propionic (bis-MPA) building blocks.Initially a family of unsymmetrical LD amphiphiles was constructed and evaluated as carriers for drug delivery of chemotherapeutics. Through self-assembly driven by their amphiphilic nature nanocarriers (NC) were constructed with a hydrophobic core and hydrophilic corona. NC were found to enhance the effect of conventional therapeutics by relocating the drug from just the nucleus to the mitochondria among other organelles. Their versatile nature allowed for dual loading of a combination of chemotherapeutics and circumvented the resistance mechanism of resistant cancer cells.Dendrimers containing a disulfide in the backbone were also constructed, these enabled the selective fragmentation of the dendrimer by reduction to small molecular thiols. The fragments were also envisioned to disrupt the delicate thiol-disulfide balance intracellularly causing reactive oxygen species (ROS). Dendrimers were elaborated by conjugation to linear PEG creating LD-hybrids and evaluated in vitro and where found to cause high degree of ROS in cancerous cells.Thiol functional polymers were created, including linear polymers, dendrimers and DLD-hybrids. The DLD-hybrids were utilized as hydrogels through two efficient chemistries relying on the versatility of the thiol. By varying the generation of the LD-hybrid and the cross-linking chemistry the modulus could be tuned.Amine functional LD-hybrids were constructed utilizing the amino acid alanine. Scaffolds were utilized as antimicrobial hydrogels for prophylaxis during surgical intervention. LD-hybrids were initially evaluated in planktonic mode, and were found to have broad spectrum effect and were highly effective against resistant bacteria. Gelation was studied relying on N-hydroxysuccinimide (NHS) esters as cross-linkers, enabling instantaneous gelation under biological conditions. The gels moduli could be varied to match various tissues including stromal and muscle. The effect of the antimicrobial coatings was investigated with promising results both in vitro and in vivo.Finally, more industrially applicable hyperbranched LD-hybrids were constructed. The synthetic strategy relied on a convenient pseudo one-pot approach using Fisher esterification along with sequential monomer addition. Materials were found to have properties and characteristics similar to those of perfect dendritic LD-hybrids. And the scaffolds were evaluated in a range of applications such as hydrogels and isopourous films with promising results.
  •  
21.
  • Angelin, Marcus, 1981- (author)
  • Discovery-Oriented Screening of Dynamic Systems: Combinatorial and Synthetic Applications
  • 2010
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis is divided into six parts, all centered around the development of dynamic (i.e., reversibly interacting) systems of molecules and their applications in dynamic combinatorial chemistry (DCC) and organic synthesis. Part one offers a general introduction, as well as a more detailed description of DCC, being the central concept of this thesis. Part two explores the potential of the nitroaldol reaction as a tool for constructing dynamic systems, employing benzaldehyde derivatives and nitroalkanes. This reaction is then applied in part three where a dynamic nitroaldol system is resolved by lipase-catalyzed transacylation, selecting two out of 16 components. In part four, reaction and crystallization driven DCC protocols are developed and demonstrated. The discovery of unexpected crystalline properties of certain pyridine β-nitroalcohols is used to resolve a dynamic system and further expanded into asynthetic procedure. Furthermore, a previously unexplored tandem nitroaldol-iminolactone rearrangement reaction between 2-cyanobenzaldehyde and primarynitroalkanes is used for the resolution of dynamic systems. It is also coupled with diastereoselective crystallization to demonstrate the possibility to combine several selection processes. The mechanism of this reaction is investigated and a synthetic protocol is developed for asymmetric synthesis of 3-substituted isoindolinones. Part five continues the exploration of tandem reactions by combining dynamic hemithioacetal or cyanohydrin formation with intramolecular cyclization to synthesize a wide range of 3-functionalized phthalides. Finally, part six deals with the construction of a laboratory experiment to facilitate the introduction of DCC in undergraduate chemistry education. The experiment is based on previous work in our group and features an acetylcholinesterase-catalyzed resolution of a dynamic transthioacylation system.
  •  
22.
  • Ankerfors, Caroline, 1979- (author)
  • Polyelectrolyte complexes : Preparation, characterization, and use for control of wet and dry adhesion between surfaces
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis examines polyelectrolyte complex (PEC) preparation, adsorption behaviour, and potential use for control of wet and dry adhesion between surfaces. PEC formation was studied using a jet-mixing method not previously used for mixing polyelectrolytes. The PECs were formed using various mixing times, and the results were compared with those for PECs formed using the conventional polyelectrolyte titration method. The results indicated that using the jet mixer allowed the size of the formed PECs to be controlled, which was not the case with the polyelectrolyte titration method, and a two-step mechanism for PEC formation was suggested. Adsorption experiments comparing two types of PECs, both produced from PAA and PAH, but with different molecular weights, demonstrated that surface-induced aggregation occurred in the high-molecular-weight PECs, whereas the adsorption stopped at a low level in the low-molecular-weight PECs. It was suggested that the latter PECs consisted of two fractions of complexes and that the fraction with lower polymer density exerted a site-blocking effect, hindering further adsorption. It was also demonstrated that particle-PECs (PPECs), in which one polyion was replaced with a silica nanoparticle, could be prepared. The purpose of preparing PPECs was to create a PEC structure that could create a joint with a special failure pattern referred to as disentanglement behaviour. Using the colloidal probe AFM technique, the expected disentanglement could be detected in PPECs, though the joint strength was low. Adhesion experiments demonstrated significantly higher pull-off values with polymer–polymer complexes than with PPECs. However, there was large spread in the data, possibly due to the surface inhomogeneity. Experiments using low-molecular-weight PECs as a paper strength agent demonstrated that PECs can indeed increase paper strength. Comparing the PEC results with those for polyelectrolyte multilayers (PEMs) prepared from the same polyelectrolytes indicated that, since the PEM strategy enables higher adsorption levels than does the PEC strategy, greater absolute strength improvements could be achieved using PEMs. However, PEC treatment resulted in the greatest effect per adsorbed amount of polymer.
  •  
23.
  • Ankerfors, Caroline (author)
  • Polyelectrolyte complexes : their preparation, adsorption behaviour and effect on paper properties
  • 2008
  • Licentiate thesis (other academic/artistic)abstract
    • In this work, the formation of polyelectrolyte complexes (PECs) has been studied using a jet mixing method not previously used for mixing polyelectrolytes. The PECs were formed from two weak polyelectrolytes, i.e., polyacrylic acid (PAA) and polyallylamine hydrochloride (PAH), with different mixing times, and the results were compared with those for PECs formed using the conventional polyelectrolyte titration method.   The adsorption behaviour of the formed PECs on silicon oxide substrates and pulp fibres was analysed, and the results were compared with those for polyelectrolyte multilayers (PEMs) prepared from the same two polyelectrolytes.   The results indicated that by using the jet mixer, the size of the formed PECs could be controlled, which was not the case with the polyelectrolyte titration method. The PECs produced by jet mixing were also found to be smaller than those produced by polyelectrolyte titration. From these results, a two-step mechanism for the formation of PECs was suggested: initial precomplex formation, which is a fast and diffusion-controlled process, followed by a reconformation process, during which the vigorous mixing in the jet mixer can partially limit secondary aggregation.   When the complexes were adsorbed to silicon oxide or pulp fibre surfaces, adsorption studies indicated that it was impossible to reach the same adsorption levels for PECs as for PEMs. This was explained in terms of free energy, entropical, reasons rather than to any geometric limitation of the surface. Despite the smaller amount of polyelectrolyte adsorbed from the PEC treatment than from the PEM treatment of pulp fibres, the PEC treatment had the greatest effect on paper strength per adsorbed amount of polymer. This was thought to be because the three-dimensional structure of the PECs, versus the smoother structure of PEMs, allows for the formation of multiple contact points between the macroscopically rough fibres and increased molecular contact area.   In the adsorption experiments, it was also found that net cationic complexes can adsorb to both anionic and cationic substrates. This phenomenon was explained by the occurrence of anionic patches on the surface of the net cationic PECs and the ability of the PECs, formed from weak polyelectrolytes, to partially change charge upon exposure to a surface of the same charge as the complex itself, due to a change of the degree of dissociation of the polyelectrolytes constituting the complex.
  •  
24.
  • Ankerfors, Mikael (author)
  • Microfibrillated cellulose : Energy-efficient preparation techniques and key properties
  • 2012
  • Licentiate thesis (other academic/artistic)abstract
    • This work describes three alternative processes for producing microfibrillated cellulose (MFC) in which pulp fibres are first pre-treated and then homogenized using a high-pressure homogenizer. In one process, fibre cell wall delamination was facilitated with a combined enzymatic and mechanical pre-treatment. In the two other processes, cell wall delamination was facilitated by pre-treatments that introduced anionically charged groups into the fibre wall, by means of either a carboxymethylation reaction or irreversibly attaching carboxymethyl cellulose (CMC) onto the fibres. All three processes are industrially feasible and enable production with low energy consumption. Using these methods, MFC can be produced with an energy consumption of 500–2300 kWh/tonne, which corresponds to a 91–98% reduction in energy consumption from that presented in earlier studies. These materials have been characterized in various ways and it has been demonstrated that the produced MFCs are approximately 5–30 nm wide and up to several microns long.
  •  
25.
  • Ankerfors, Mikael, 1978- (author)
  • Microfibrillated cellulose: Energy-efficient preparation techniques and applications in paper
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • This work describes three alternative processes for producing microfibrillated cellulose (MFC; also referred to as cellulose nanofibrils, CNF) in which bleached pulp fibres are first pretreated and then homogenized using a high-pressure homogenizer. In one process, fibre cell wall delamination was facilitated by a combined enzymatic and mechanical pretreatment. In the two other processes, cell wall delamination was facilitated by pretreatments that introduced anionically charged groups into the fibre wall, by means of either a carboxymethylation reaction or irreversibly attaching carboxymethylcellulose (CMC) to the fibres. All three processes are industrially feasible and enable energy-efficient production of MFC. Using these processes, MFC can be produced with an energy consumption of 500–2300 kWh/tonne. These materials have been characterized in various ways and it has been demonstrated that the produced MFCs are approximately 5–30 nm wide and up to several microns long.The MFCs were also evaluated in a number of applications in paper. The carboxymethylated MFC was used to prepare strong free-standing barrier films and to coat wood-containing papers to improve the surface strength and reduce the linting propensity of the papers. MFC, produced with an enzymatic pretreatment, was also produced at pilot scale and was studied in a pilot-scale paper making trial as a strength agent added at the wet-end for highly filled papers.
  •  
26.
  • Ansari, Mohd Farhan (author)
  • Nanostructured Cellulose Biocomposites : Effects from dispersion, network and interface
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • The major load bearing component in native wood, cellulose nanofibrils, are potential candidates for use as reinforcement in polymer matrices. This study is based on nanocellulose composites and attempts to prepare and characterize biocomposites with high nanocellulose content and investigate the influence of nanostructure on macroscopic properties.In an initial study, effects from cellulose nanocrystal (CNC) dispersion on optical and mechanical properties of CNC composites are studied in a model system using polyvinylacetate (PVAc) as the polymer. CNC surface modification is used as an aid to improve dispersion, and nanocomposites with up to 20 wt% of modified and unmodified CNC are characterized. Strong influence of CNC as reinforcement and on polymer matrix characteristics were observed with well-dispersed CNCs, resulting in nanocomposites with significantly improved mechanical properties.In the subsequent parts, an impregnation-based processing strategy is used to prepare cellulose nanofibril (CNF) based thermoset (epoxy and unsaturated polyester) composites with high CNF content (15 - 50 vol%). Influence of CNF surface hydroxyls on epoxy curing is discussed. A mono-epoxy compound is used to confirm covalent epoxy/CNF reaction and the implications of this modification on mechanical properties of wet CNF network are illustrated. Mechanical properties of thermoset composites are characterized at different relative humidities to evaluate their hygromechanical stability. The role of the CNF-thermoset interface is investigated by comparing composites with epoxy and unsaturated polyester matrices. Unique effects due to the nanostructure of composites are discussed with respect to CNF dispersion, CNF network characteristics and CNF/matrix interface. Additionally, pulp fiber composites, where the fiber wall itself is impregnated with resin, are designed and differences between nanocellulose (nanoscale network) and pulp fibers (microscale diameter) as reinforcements are analyzed.
  •  
27.
  • Antoni, Per, 1979- (author)
  • Functional Dendritic Materials using Click Chemistry : Synthesis, Characterizations and Applications
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Förfrågan efter nya och mer avancerade applikationer är en pågående process vilket leder till en konstant utveckling av nya material. För att förstå relationen mellan en applikations egenskaper och dess sammansättning krävs full förståelse och kontroll över materialets uppbyggnad. En sådan kontroll över uppbyggnaden hos material hittas i en undergrupp till dendritiska polymerer som kallas dendrimerer. I den här doktorsavhandlingen belyses nya metoder för att framställa dendrimer med hjälp av selektiva kemiska reaktioner. Sådana selektiva reaktioner kan hittas inom konceptet klickkemi och har i detta arbete kombinerats med traditionell anhydrid- och karbodiimidmedierad kemi. Denna avhandling diskuterar en accelererad tillväxtmetod, dendrimerer med inre och yttre reaktiva grupper, simultana reaktioner och applikationer baserade på dessa dendritiska material. En accelererad tillväxtmetod har utvecklats baserad på AB2- och CD2-monomerer. Dessa monomerer tillåter tillväxt av dendrimerer utan att använda sig av skyddsgruppkemi eller aktivering av ändgrupper. Detta gjordes genom att kombinera kemoselektiviteten hos klickkemi tillsammans med traditionell syraklorid kopplingar. Dendrimerer med inre alkyn- eller azidfunktionalitet syntetiserades genom att använda AB2C-monomerer. Den dendritiska tillväxten skedde med hjälp av karbodiimidmedierad kemi. Monomererna som användes bär på en C-funktionalitet, alkyn eller azid, och på så sätt byggs får interiören i de syntetiserade dendrimeren en inneburen aktiv funktionell grupp. Ortogonaliteten hos klickkemi användes för att sammanfoga monomerer till en dendritisk struktur. Traditionell anhydridkemi- och klickemireaktioner utfördes samtidigt och på så sätt kunde dendritiska strukturer erhållas med färre antal uppreningssteg. En ljusemitterande dendrimer syntetiserades genom att koppla azidfunktionella dendroner till en alkynfunktionell cyclenkärna. Europiumjoner inkorporerades i kärnan varpå dendrimerens fotofysiska egenskaper analyserades. Mätningarna visade att den bildade triazolen hade en sensibiliserande effekt på europiumjonen. Termiska studier på några av de syntetiserade dendrimerer utfördes för att se om några av dem kunde fungera som templat vid framställning av isoporösa filmer.
  •  
28.
  • Antonsson, Stefan, 1979- (author)
  • Strategies for improving kraftliner pulp properties
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • A large part of the world paper manufacturing consists of production of corrugated board components, kraftliner and fluting, that are used in many different types of corrugated boxes. Because these boxes are stored and transported, they are often subjected to changes in relative humidity. These changes together with mechanical loads will increase the deformation of the boxes compared to the case where the same loads are applied in a static environment. This enlarged creep due to the changes in relative humidity is called mechano-sorptive or accelerated creep. Mechano-sorptive creep forces producers to use high safety factors when designing boxes, and therefore, this is one of the key properties of kraftliner boards.   Different strategies to decrease mechano-sorptive creep, and to simultaneously gain more knowledge about the causes for this phenomenon in paper, are the aim of this work. Derivatised and underivatised black liquor lignins, a by-product produced in pulp mills in large quantities, have been used together with biomimetic methods, to modify the properties of kraftliner pulp. Furthermore, the properties of kraftliner pulp have been compared to other pulps in order to evaluate the influence of fibre morphological factors, such as fibre width and shape factor, on the mechano-sorptive creep. In addition the influence of the chemical composition of the kraftliner pulp has been evaluated both by means of treating a kraftliner pulp with chlorite and xylanase and by producing pulps with different chemical composition.   By using lignin and biomimetic methods, to create radical coupling reactions, it has been shown that it is possible to increase the wet strength of kraftliner pulp sheets. This method of treating the pulp showed, however, no significant effects on the mechano-sorptive creep. The addition of an apolar suberin-like lignin derivative, which has been shown to be possible to produce from natural resources, did show a positive effect on mechano-sorptive creep properties, but at the expense of stiffness properties in constant climate. Different pulps were compared with a kraftliner pulp and it was observed that the ratio between tensile stiffness and hygroexpansion can be used to estimate the mechano-sorptive creep properties. The hardwood kraft pulps investigated had lower hygroexpansion, probably due to more slender and straighter fibres, and higher tensile stiffness, probably due to lower lignin content. As the lignin content was varied by different methods in kraft pulps, it was observed that increased lignin content gives an increased hygroexpansion and decreased tensile stiffness as well as an increased mechano-sorptive creep. There were also indications of increased mechano-sorptive creep due to higher xylan content.    
  •  
29.
  • Antonsson, Stefan, 1979- (author)
  • The Use of Lignin Derivatives to Improve Selected Paper Properties
  • 2007
  • Licentiate thesis (other academic/artistic)abstract
    • Ved består huvudsakligen av tre typer av polymerer, cellulosa, hemicellulosa och lignin. Lignin bildas i naturen genom enzymatiskt initierad oxidativ koppling av tre olika typer av fenylpropan-enheter. Dessa bygger genom olika kol-kol- och kol-syre-bindningar upp en amorf tredimensionell polymer. När kemisk massa tillverkas bryts lignin ner och löses ut i kokluten. Luten innehåller de förbrukade kokkemikalierna och bränns generellt i en sodapanna för att regenerera kemikalierna och producera ånga. Sodapannan är emellertid dyr. Därför har den blivit produktionsbegränsande på många massabruk. Att avlägsna en del av ligninet från avluten vore därför önskvärt och att finna ekonomiskt intressanta produkter baserade på lignin från svartlut är därför ett viktigt forskningsområde . Ett lämpligt område för ligninprodukter vore som tillsatts i oblekt massa. Oblekt massa används till stor del för tillverkning av kraftliner, topp- och bottenskikten på wellpapp. När lådor av wellpapp lagras i containrar som färdas över haven, förändras den relativa luftfuktigheten. Detta gör att lådorna kollapsar lättare än om de skulle ha lagrats vid konstant luftfuktighet, även en hög sådan. Detta är på grund av det så kallade mekanosorptiva- eller accelererade krypfenomenet. Genom tillsatts av våtstyrkemedel till kraftliner eller behandla den med hydrofoba ämnen, finns indikatoner på att mekanosorptiva effekten skulle kunna minska. För att försöka minska den effekten har ett lågmolekylärt kraftlignin, som utvunnits med hjälp av tvärsflödesfiltrering av svartlut och svavelsyrafällning, använts. Genom derivatisering av detta lignin med linolja erhölls ett hydrofobt ligninderivat som uppvisar strukturella likheter med biopolymeren suberin. När detta suberinlika ligninderivat tillsätts till massa verkar det mekanosorptiva krypet minska. När lågmolekylärt lignin används tillsammans med ligninradikalinitiatorerna lackas eller mangan(III) i kraftlinermassa erhålls dessutom en våtstyrka på ca 5% av torrstyrkan. Efter aminering av detta lignin gav en tillsatts till kraftlinermassan en våtstyrka på upp till 10% av torrstyrkan. Det finns indikationer på att det mekanosorptiva krypet samtidigt minskar när dessa behandlingar görs som ger upphov till ökad våtstyrka.
  •  
30.
  • Areskogh, Dimitri, 1982- (author)
  • Structural Modifications of Lignosulphonates
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • Lignosulphonates are by‐products from the sulphite pulping process for the manufacture ofspecialty dissolving pulps and paper. During the liberation of the cellulose, the lignin isfractionated and solubilised through covalent addition of sulphonic acid groups at variouspositions in the structure. The formed sulphonated lignin, lignosulphonate is then furtherisolated and refined. The amphiphilic nature of lignosulphonates has enabled them to be used as additives to varioussuspensions to improve their dispersion and stability. The by far largest utilisation oflignosulphonates is as dispersants in concrete. Here, lignosulphonates act by dispersing cementparticles to prevent flocculation, un‐even particle distribution and reduced strengthdevelopment. The dispersion is achieved through steric and electrostatic repulsion of the cementparticles by the lignosulphonate polymer. This behaviour is intimately linked with the overallsize and amount of charged groups in the dispersing polymer. Traditional modifications oflignosulphonates have been limited to removal of sugars, filtration and fractionation. Thesemodifications are not sufficient for utilisation of lignosulphonates in high‐strength concrete. Heresynthetic dispersants and superplasticisers are used which are considerably more efficient evenat low dosages. To compete with these, additional modifications of lignosulphonates are likely tobe necessary. The molecular weight and functional group composition have been identified anddescribed as the most interesting parameters that can be modified. Currently, no suitable method exists to increase the molecular weight of lignosulphonates.Oxidation by the natural radical initiating enzyme laccase is an interesting tool to achieve suchmodifications. In this thesis several aspects of the mechanism through which this enzyme reactswith lignin and lignosulphonate structures have been elucidated through model compoundstudies. Further studies showed that laccase alone was a highly efficient tool for increasing themolecular weight of commercial lignosulphonates at low dosages and in short incubation times.Immobilisation of the laccase to a solid support to enable re‐utilisation was also investigated. Modification of functional group composition of lignosulphonates was achieved throughozonolysis and the Fenton’s reagent, a mixture of hydrogen peroxide and iron(II)acetate.Introduction of charged carboxylic groups was achieved through opening of the benzyl rings oflignosulphonates. It was found that a two‐stage process consisting of laccase oxidation followedby ozonolysis was an efficient technique to create a polymer enriched with carboxylic acidgroups with a sufficient molecular size. Oxidation by the Fenton’s reagent was shown to yield similar modifications as the combinedlaccase/ozonolysis treatment albeit with less pronounced results but with a large level of controlthrough variation of a number of reaction parameters. The Fenton’s reagent can therefore be aninteresting alternative to the aforementioned two‐stage treatment. These modifications are interesting for large‐scale applications not only because of theirsimplicity in terms of reaction parameters but also because of the ubiquity of the used enzymeand the chemicals in the pulp and paper industry.
  •  
31.
  •  
32.
  • Arias, Veluska, 1988- (author)
  • Towards a retro-structural design of degradable aliphatic polyester-based materials
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • The increasing amount of accumulated plastic waste has led to a continuous search for degradable materials for use in a variety of applications. This eco-friendly approach contemplates the use of degradable alternatives to the inert polymers (the main components in plastics) used today and further engineering of their degradation pathways. The most extensively investigated group of degradable polymers is the poly(α-esters), due to their tailorable thermo-mechanical properties and degradability. However, degradation of these polymers can be undesirable or desirable depending on the time of occurrence. Thus, by controlling the degradation process, it is possible to predict and, consequently, tailor the materials’ lifetime for specific needs.Herein, a methodology to allow for a retro-structural design of degradable materials based on aliphatic polyesters is presented. Insights into the degradation behavior of the systems were obtained and further translated to different levels of structural designs to achieve desired macroscopic properties in terms of performance and degradability. Several combinational strategies based on polymer morphology, polymer structure and block design, were developed. As a result, homopolymers and block copolymers with projected degradation for different instances were created. Apart from bulk modifications in the material, it was shown that it was possible to tailor degradation pathways by means of specific interactions between polymer pairs in block copolymers and also in polymer blends. Furthermore, well-defined structure-property relationships are crucial when designing materials with specific degradability properties. In light of this, degradable polyester-based particles with tunable crystalline structures and, hence, physical properties, were developed. These particles proved to function as reinforcing agents in the creation of “green” homocomposites. These composites are promising alternatives in the search for materials that are completely degradable and sustainable.
  •  
33.
  • Atari Jabarzadeh, Sevil, 1981- (author)
  • Prevention of Biofilm Formation on Silicone Rubber Materials for Outdoor High Voltage Insulators
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • Microbial colonization on the surface of silicone rubber high voltage outdoor insulators often results in the formation of highly hydrated biofilm that influence the surface properties, such as surface hydrophobicity. The loss of hydrophobicity might lead to dry band formation, and, in the worst cases, flashover and failure of the insulator.In this work, the biocidal effects of various antimicrobial compounds in silicone rubber materials were determined. These materials were evaluated according to an ISO standard for the antimicrobial activity against the growth of aggressive fungal strains, and microorganisms that have been found colonizing the surfaces of outdoor insulators in several areas in the world. Several compounds suppressed microbial growth on the surfaces of the materials without compromising the material properties of the silicone rubber. A commercial biocide and thymol were very effective against fungal growth, and sodium benzoate could suppress the fungal growth to some extent. Thymol could also inhibit algal growth. However, methods for preservation of the antimicrobial agents in the bulk of the material need to be further developed to prevent the loss of the compounds during manufacturing. Biofilm formation affected the surface hydrophobicity and complete removal of the biofilm was not achieved through cleaning. Surface analysis confirmed that traces of microorganisms were still present after cleaning.Further, surface modification of the silicone rubber was carried out to study how the texture and roughness of the surface affect biofilm formation. Silicone rubber surfaces with regular geometrical patterns were evaluated to determine the influence of the surface texture on the extent of microbial growth in comparison with plane silicone rubber surfaces. Silicone rubber nanocomposite surfaces, prepared using a spray-deposition method that applied hydrophilic and hydrophobic nanoparticles to obtain hierarchical structures, were studied to determine the effects of the surface roughness and improved hydrophobicity on the microbial attachment. Microenvironment chambers were used for the determination of microbial growth on different modified surfaces under conditions that mimic those of the insulators in their outdoor environments. Different parts of the insulators were represented by placing the samples vertically and inclined. The microbial growth on the surfaces of the textured samples was evenly distributed throughout the surfaces because of the uniform distribution of the water between the gaps of the regular structures on the surfaces. Microbial growth was not observed on the inclined and vertical nanocomposite surfaces due to the higher surface roughness and improved surface hydrophobicity, whereas non-coated samples were colonized by microorganisms.
  •  
34.
  • Aulin, Christian, 1980- (author)
  • Novel oil resistant cellulosic materials
  • 2009
  • Doctoral thesis (other academic/artistic)abstract
    • The aim of this study has been to prepare and characterise oil resistant cellulosic materials, ranging from model surfaces to papers and aerogels. The cellulosic materials were made oil resistant by chemical and topographic modifications, based on surface energy, surface roughness and barrier approaches. Detailed wetting studies of the prepared cellulosic materials were made using contact angle measurements and standardised penetration tests with different alkanes and oil mixtures. A significant part of the activities were devoted to the development of model cellulosic surfaces with different degrees of crystalline ordering for the wetting studies. Crystalline cellulose I, II and amorphous cellulose surfaces were prepared by spin-coating of cellulose nanocrystal or microfibrillated cellulose (MFC) dispersions, with Langmuir-Schaefer (LS) films or by a layer-by-layer (LbL) deposition technique. The formation of multilayers consisting of polyethyleneimine (PEI)/anionic MFC or cationic MFC/anionic MFC was further studied and optimized in terms of total layer thickness and adsorbed amount by combining Dual Polarization Interferometry (DPI) or Stagnation Point Adsorption Reflectrometry (SPAR) with a Quartz Crystal Microbalance with Dissipation (QCM-D). The smooth cellulosic surfaces prepared had different molecular and mesostructure properties and different surface energies as shown by X-ray diffraction, Atomic Force Microscopy (AFM) imaging, ellipsometry measurements and contact angle measurements. The cellulose model surfaces were found to be ideal for detailed wetting studies, and after the surface has been coated or covalently modified with various amounts of fluorosurfactants, the fluorinated cellulose films were used to follow the spreading mechanisms of different oil mixtures. The viscosity and surface tension of the oil mixtures, as well as the dispersive surface energy of the cellulose surfaces, were found to be essential parameters governing the spreading kinetics. A strong correlation was found between the surface concentration of fluorine, the dispersive surface energy and the measured contact angle of the oil mixtures. Silicon surfaces possessing structural porous characteristics were fabricated by a plasma etching process. The structured silicon surfaces were coated with sulfate-stabilized cellulose I nanocrystals using the LbL technique. These artificial intrinsically oleophilic cellulose surfaces were made highly oleophobic when coated with a thin layer of fluorinated silanes. By comparison with flat cellulose surfaces, which are oleophilic, it is demonstrated that the surface energy and the surface texture are essential factors preventing oil from spreading on the surface and, thus, inducing the observed macroscopic oleophobic properties. The use of the MFC for surface coating on base papers demonstrated very promising characteristics as packaging materials. Environmental-Scanning Electron Microscopy (E-SEM) micrographs indicated that the MFC layer reduced the sheet porosity, i.e. the dense structure formed by the nanofibers resulted in superior oil barrier properties. Attempts were made to link the procedure for preparation of the MFC dispersions to the resulting microstructure of the coatings, and film porosity and the film moisture content to the resulting permeability properties. Finally, MFC aerogels were successfully prepared by freeze-drying. The surface texture of the porous aerogels was carefully controlled by adjusting the concentration of the MFC dispersion used for the freeze-drying. The different scales of roughness of the MFC aerogels were utilised, together with the very low surface energy created by fluorination of the aerogel, to induce highly oleophobic properties.
  •  
35.
  • Aulin, Christian (author)
  • Preparation, characterisation and wetting of fluorinated cellulose surfaces
  • 2007
  • Licentiate thesis (other academic/artistic)abstract
    • This thesis deals with the wetting by oil mixtures of two different model cellulose surfaces. The surfaces studied were a regenerated cellulose (RG) surface prepared by spin-coating, and a film consisting of polyelectrolyte multilayers (PEM) of Poly(ethyleneimine) (PEI) and a carboxymethylated Microfibrillated Cellulose (MFC). After coating or covalently modifying the cellulose surfaces with various amounts of fluorosurfactants, the fluorinated cellulose films were used to follow the spreading mechanisms of the different oil mixtures. The viscosity and surface tension of the oil, as well as the dispersive surface energy of the cellulose surface, are essential parameters governing the spreading kinetics. X-ray Photoelectron Spectroscopy (XPS) and dispersive surface energy measurements were made on the cellulose films treated with fluorosurfactants. A strong correlation between the surface coverage of fluorine, the dispersive surface energy and the measured contact angle of the oil mixtures was found. For example, a dispersive surface energy less than 18 mN/m was required in order for the cellulose surface to be non-wetting (θe > 90º) by castor oil. Significant parts of this work were devoted to the development of cellulose surfaces for the wetting studies. The formation of a PEM consisting of PEI and MFC was studied and the total layer thickness and adsorbed amount were optimized by combining Dual Polarization Interferometry (DPI) with a Quartz Crystal Microbalance with Dissipation (QCM-D). The adsorption behaviour as well as the influence of the charge density, pH and electrolyte concentration of PEI, and electrolyte concentration of the MFC dispersion on the adsorbed amount of MFC were investigated. Results indicate that a combination of a high pH, a fairly high electrolyte concentration for PEI solution together with low or zero electrolyte concentration for the MFC resulted in the largest possible adsorbed amounts of the individual PEI and MFC layers. The structures of the two cellulose surfaces were characterised with atomic force microscopy measurements and a difference in terms of surface structure and roughness were observed. Both surfaces were however very smooth with calculated RMS roughness values in the range of a few nanometers. The adsorption behaviour of water-dispersible fluorosurfactants physically adsorbed at various concentrations onto the two model cellulose surfaces was investigated using DPI. The aggregate structure of an anionic fluorosurfactant, perfluorooctadecanoic acid, dispersed in water was studied by Cryo Transmission Electron Microscopy (Cryo-TEM). The fluorosurfactants had an adsorption and desorption behaviour in water which was dependent on the fluorinated chain length and the aggregation form of the fluorosurfactant. Perfluorooctanoic acid and a commercial cationic fluorosurfactant with a formal composition of CF3 (CF2)nSO2NH(CH2)3-4N(CH3)3+I- was found to desorb from the MFC and RG surfaces upon rinsing with water, whereas perfluorooctadecanoic acid was strongly adsorbed to the surfaces. It is essential for a fluorosurfacatant to be strongly adsorbed to the cellulose surface even after rinsing to yield hydrophobic and lipophobic (oleophobic) properties with a large contact angle for oils and water.
  •  
36.
  • Azeem, Muhammad (author)
  • Microbes Associated with Hylobius abietis : A Chemical and Behavioral Study
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis is based on three inter-related studies: the first part deals with the microbial consortium, the identification of microbes and their volatiles, the second part deals with the study of bio-chemical control methods of two conifer pests; the pine weevil Hylobius abietis (L.) and the root rot fungi Heterobasidion spp., and the third part describes the production of styrene by a fungus using forest waste.The large pine weevil (Hylobius abietis L.) is an economically important pest insect of conifers in reforestation areas of Europe and Asia. The female weevils protect their eggs from feeding conspecifics by adding frass (mixture of weevil feces and chewed bark) along with the eggs. In order to understand the mechanism behind frass deposition at the egg laying site and to find repellents/antifeedants for pine weevils, microbes were isolated from the aseptically collected pine weevil frass. Microbial produced volatile organic compounds (VOCs) were collected by solid phase micro extraction and analyzed by GC-MS after cultivating them on weevil frass broth. The major VOCs were tested against pine weevils using a multi-choice olfactometer. Ewingella sp., Mucor racemosus, Penicillium solitum, P. expansum, Ophiostoma piceae, O. pluriannulatum, Debaryomyces hansenii and Candida sequanensis were identified as abundant microbes. Styrene, 6-protoilludene, 1-octene-3-ol, 3-methylanisole, methyl salicylate, 2-methoxyphenol and 2-methoxy-4-vinylphenol were the VOCs of persistently isolated microbes. In behavioral bioassay, methyl salicylate, 3-methylanisole and styrene significantly reduced the attraction of pine weevils to their host plant volatiles. Heterobasidion spp. are severe pathogenic fungi of conifers that cause root and butt rot in plants. Bacterial isolates were tested for the antagonistic activity against fungi on potato dextrose agar. Bacillus subtilis strains significantly inhibited the growth of H. annosum and H. parviporum. Styrene is an industrial chemical used for making polymeric products, currently produced from fossil fuel. A strain of Penicillium expansum isolated from pine weevil frass was investigated for the production of styrene using forest waste. Grated pine stem bark and mature oak bark supplemented with yeast extract produced greater amounts of styrene compared to potato dextrose broth.
  •  
37.
  • Azhar, Shoaib, 1980- (author)
  • Extraction of Polymeric Hemicelluloses from Spruce Wood
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • Hemicelluloses are one of the three main components of spruce wood and constitute about 20% of the wood material. During mechanical pulping, 5–10% of the hemicelluloses are accumulated in waste waters, whereas during chemical pulping 70–80% of the hemicelluloses are lost in process liquors. The concept of integrated forest biorefinery involves the development of methods to extract these hemicelluloses prior to pulping in order to produce value-­added products besides pulp. This thesis describes some of the feasible possibilities of extracting hemicelluloses from wood at a high molecular weight prior to pulping in addition to presenting a deeper understanding of their degradation under mild treatment conditions.A major obstacle for the efficient extraction of hemicelluloses is the recalcitrance due to the network of lignin and polysaccharides. This network can be loosely opened by the use of enzymes and this improves the extraction of hemicelluloses. A chemical impregnation of the wood chips was performed to enhance the accessibility of the cell wall to enzymes. The ability of different additives to stabilize the hemicelluloses against peeling during the alkaline impregnation stage was also investigated in order to obtain a better yield in subsequent extraction.Increasing the surface area and decreasing the mass transport length could also improve the yield of hemicelluloses extracted from wood. This was achieved with a mild mechanical pre-­treatment of wood chips using an impressafiner and a fiberizer. Polymers mainly consisting of galactoglucomannan with an average molecular weight of 30 kDa were extracted from fiberized wood with water.Different pre-­treatment and extraction methods were combined to demonstrate the concept of material biorefinery based on wood.The kinetics of degradation of spruce galactoglucomannan were studied under alkaline conditions. It was degraded in two phases at two different rates. A kinetic model was developed to fit the experimental data and to estimate the activation energies. 
  •  
38.
  • Badal Tejedor, Maria, 1986- (author)
  • Interfacial and material aspects of powders with relevance to pharmaceutical tableting performance
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Tablets are the most common forms of drug administration. They are convenient to administer and easy to manufacture. However, problems associated with the adhesion of the powders to the tableting tools are common. This phenomenon is known as sticking and even though it has been well documented and studied, it remains poorly understood. The many factors that contribute to good performance of the powders make the sticking problem difficult to solve.The goal of this study is to establish a relationship between the properties measured at the nanoscale to the overall tablet mechanical properties, tablet performance and powder pre-processing induced modifications. By using atomic force microscopy (AFM) we aim to develop an analytical method to characterize the mechanical and adhesive properties of the pharmaceutical powders at the nanoscale. Other methodologies such as scanning electron microscopy (SEM), thermal analyses (DSC, TGA) and tablet strength test were also used. The materials used in this study are commonly used excipients, a sticky drug and magnesium stearate (MgSt). Two different approaches offered by AFM were employed: sharp tip imaging and colloidal probe force measurements. Nano-mechanical properties of the materials were evaluated with a sharp tip cantilever showing that higher adhesion correlates with higher tablet cohesion and that both are significantly affected by the presence of MgSt. AFM characterization of the particle surface mechanical properties at the nanoscale was also used to detect the crystallinity and amorphicity levels of the materials. New approaches to presenting such data considering the particle heterogeneity and to track the dynamics of surface recrystallization are revealed. Adhesive interactions between a steel sphere and sticky and non-sticky powders were performed with the colloidal probe technique. Sticky materials presented a higher adhesion against the steel surface, and reveal the mechanism of stickiness.This work thus contributes to the provision of predictability of the performance of formulations at an early stage of the development process.
  •  
39.
  • Bah, Juho, 1979- (author)
  • Metal-Free Catalysis for Efficient Synthesis
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • The strength of efficient metal-free catalysis will be examined in this thesis. Efforts towards more sustainable processes will be demonstrated through implementation of strategies that meet several of the 12 principles of Green Chemistry.In the first part, a stereoselective total synthesis of multiple alkaloids from the Corynantheine and Ipecac families together with their non-natural analogues will be disclosed. A highly efficient, common synthetic strategy is applied leading to high overall yields starting from easily available starting material. Overall operational simplicity and sustainability have been the main focus. Time-consuming and waste-generating isolations and purifications of intermediates have been minimized, as well as the introduction of protection-group chemistry. Moreover, the first example of the total synthesis of Hydroxydihydrocorynantheol together with its non-natural epimer has been accomplished in multi-gram scale without protection groups and without a single isolation or purification step in high overall yield and diastereoselectivity.In the second part, carbocations will be presented as highly effective and versatile non-metal Lewis acid catalysts. Lewis acidity-tuning of carbocations will be introduced and applied in several reactions to suppress competing reactions. Finally, the broad scope of carbocation catalyzed transformations will be exposed.At large, evident progress has been made towards more sustainable chemistry.
  •  
40.
  • Barreiro Fidalgo, Alexandre (author)
  • Experimental studies of radiation-induced dissolution of UO2 : The effect of intrinsic solid phase properties and external factors
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Dissolution of the UO2 matrix is one of the potential routes for radionuclide release in a future deep geological repository for spent nuclear fuel. This doctoral thesis focuses on interfacial reactions of relevance in radiation-induced dissolution of UO2 and is divided in two parts:In the first part, we sought to explore the effects of solid phase composition:The impact of surface stoichiometry on the reactivity of UO2 towards aqueous radiolytic oxidants was studied. H2O2 reacts substantially faster with stoichiometric UO2 than with hyperstoichiometric UO2. In addition, the release of uranium from stoichiometric UO2 is lower than from hyperstoichiometric UO2. The behavior of stoichiometric powder changes with exposure to H2O2, approaching the behavior of hyperstoichiometric UO2 with the number of consecutive H2O2 additions.The impact of Gd-doping on the oxidative dissolution of UO2 in an aqueous system was investigated. A significant decrease in uranium dissolution and higher stability towards H2O2 for (U,Gd)O2 pellets compared to standard UO2 was found.In the second part, we sought to look at the effect of external factors:The surface reactivity of H2 and O2 was studied to understand the overall oxide surface reactivity of aqueous molecular radiolysis products. The results showed that hydrogen-abstracting radicals and H2O2 are formed in these systems. Identical experiments performed in aqueous systems containing UO2 powder showed that the simultaneous presence of H2 and O2 enhances the oxidative dissolution of UO2 compared to a system not containing H2.The effect of groundwater components such as bentonite and sulfide on the oxidative dissolution of UO2 was also explored. The presence of bentonite and sulfide in water could either delay or prevent in part the release of uranium to the environment. The Pd catalyzed H2 effect is more powerful than the sulfide effect. The poisoning of Pd catalyst is not observed under the conditions studied.
  •  
41.
  • Beheshti, Reza, 1981- (author)
  • Sustainable Aluminum and Iron Production
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Aluminium recycling requires 95% less energy than primary production with no loss of quality. The Black Dross (BD) produced during secondary aluminium production contains high amounts of water-soluble compounds, therefore it is considered as a toxic waste. In the present work, salt removal from BD by thermal treatment has been investigated in laboratory scale. The optimum conditions for treatment were established, i.e., temperature, gas flow rate, holding time, rotation rate, and sample size. The overall degree of chloride removal was established to increase as a function of time and temperature. Even Pretreated Black Dross (PBD) was evaluated as a possible raw material for the production of a calcium aluminate-based ladle-fluxing agent to be used in the steel industry. The effects of different process parameters on the properties of the produced flux were experimentally investigated, i.e. CaO/Al2O3 ratio, temperature, holding time, and cooling media. The utilization of PBD as the alumina source during the production of a calcium aluminate fluxing agent shows promising results. The iron/steel industry is responsible for 9% of anthropogenic energy and process CO2 emissions. It is believed that the only way to a long-term reduction of the CO2 emissions from the iron/steel industry is commercialization of alternative processes such as Direct Reduction (DR) of iron oxide. Detailed knowledge of the kinetics of the reduction reactions is, however, a prerequisite for the design and optimization of the DR process. To obtain a better understanding of the reduction kinetics, a model was developed step-by-step, from a single pellet to a fixed bed with many pellets. The equations were solved using the commercial software COMSOL Multiphysics®. The final model considers the reaction rate and mass transfer inside the pellet, as well as the mass transfers and heat transfer in the fixed bed. All the models were verified against experimental results, and where found to describe the results in a satisfying way.
  •  
42.
  • Bellais, Michel, 1971- (author)
  • Modelling of the pyrolysis of large wood particles
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • Wood is an interesting alternative to fossil fuels. It is CO2-neutral and widely available. However it is a difficult fuel to handle which features a low energy content. Thus technologies for wood thermal conversion need to be improved. This work concerns the development of a comprehensive two-dimensional mathematical model describing the pyrolysis of large wood particles and its implementation in a Fortran program. The model has been continuously tested and improved by experimental results obtained in a reactor for single particle pyrolysis (SPAR) at the Division of Physical Chemistry at Göteborg University. The first part of the thesis (Paper I) presents a kinetic study of the pyrolysis of large wood particles, based on experiments carried out in the SPAR. Three pyrolysis kinetic schemes were selected for later inclusion in a model featuring heat and mass transfer. Paper II concerns the addition of a sub-model for heat and mass transfer to the three kinetic schemes. The resulting model for large wood particles has been tested against experiments in the SPAR. A scheme based on two competing reactions developed from experiments at low temperature pyrolysis in the SPAR was found to perform well but its empirical nature limits its validity to the experimental conditions of the SPAR. A scheme from the literature based on TGA experiments appeared promising, especially when planning to enhance it with secondary reactions. Paper III deals with the development of shrinkage models for 2D cylindrical particles. The predicted mass loss, size variation and surface temperature were tested against experiments carried out in the SPAR. The shrinkage does not a?ect the pyrolysis rate or the surface temperature in the conditions prevailing in the SPAR. Paper IV investigates the influence of different shrinkage models and the geometry on the heating rate of a shrinking particle. Shrinkage influences the heating rate positively by increasing the conductive heat flow and negatively by decreasing the surface area of the particle. Therefore the net effect of shrinkage on the heating rate depends on the particle geometry and the location of shrinkage. Paper V studies three di?erent models for wood drying under pyrolysis conditions. The predicted surface temperature and global drying rate were compared with experimental results from pyrolysis experiments of wet particles in the SPAR. A model based on a first order kinetic evaporation rate was found to be the most interesting because of the quality of the prediction of the drying rate and the ease of implementation.
  •  
43.
  • Benavente, Martha, 1963- (author)
  • Adsorption of Metallic Ions onto Chitosan : Equilibrium and Kinetic Studies
  • 2008
  • Licentiate thesis (other academic/artistic)abstract
    • Equilibrium isotherms and the adsorption kinetics of heavy metals onto chitosan were studied experimentally. Chitosan, a biopolymer produced from crustacean shells, has applications in various areas, particularly in drinking water and wastewater treatment due to its ability to remove metallic ions from solutions. The adsorption capacity of chitosan depends on a number of parameters: deacetylation degree, molecular weight, particle size and crystallinity. The purpose of this work was to study the adsorption of copper, zinc, mercury, and arsenic on chitosan produced from shrimp shells at a laboratory level. The experimental work involved the determination of the adsorption isotherms for each metallic ion in a batch system. The resulting isotherms were fitted using the Langmuir model and the parameters of the equation were determined. Kinetic studies of adsorption for different metallic ions at different concentrations and with different particle sizes were performed in batch and column systems. Simplified models such as pseudo-first-order, pseudo-second-order, and intra-particle diffusion equations were used to determine the rate-controlling step. Some preliminary studies were carried out to address the application of chitosan as an adsorbent in the removal of heavy metals or other metallic ions from natural water and wastewater. The regeneration of chitosan was also studied. The results showed that the adsorption capacity depends strongly on pH and on the species of metallic ions in the solution. The optimum pH value for the metallic cation adsorption was between 4 and 6, whereas for arsenic adsorption it was about 3. When the pH is not controlled, the adsorption capacity is independent of the initial pH with the solution reaching a final pH of about 7. It was also found that the Langmuir equation described very well the experimental adsorption data for each metallic ion. The adsorption capacity for the metals on chitosan follows the sequence Hg>Cu>Zn>As. The study of the adsorption kinetics of these metallic ions shows that the particle size has a significant influence on the metal uptake rate for copper; but that it has only a slight influence on the adsorption rate of zinc and mercury in the range studied. Arsenic adsorption exhibited an interesting behaviour which depends strongly on the pH of the solution; the uptake increased at short adsorption times and then decreased at long times. The analysis of kinetic models showed that the pseudo-second-order adsorption mechanism is predominant, and the overall rate of the metallic ion adsorption process is therefore controlled by adsorption reactions and not by mass transfer for the range of particle sizes examined in this study. With regard to the regeneration of chitosan, it was found that sodium hydroxide is a good agent for zinc and arsenic desorption, whereas ammonium sulphate and sodium chloride were the most suitable for copper and mercury desorption, respectively. The ability of chitosan to remove arsenic from natural water, and copper and zinc from mining waste water was verified. The use of these results for designing purposes is a subject for future work.
  •  
44.
  • Benkestock, Kurt, 1961- (author)
  • Electrospray Ionization Mass Spectrometry for Determination of Noncovalent Interactions in Drug Discovery
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Noncovalent interactions are involved in many biological processes in which biomolecules bind specifically and reversibly to a partner. Often, proteins do not have a biological activity without the presence of a partner, a ligand. Biological signals are produced when proteins interact with other proteins, peptides, oligonucleotides, nucleic acids, lipids, metal ions, polysaccharides or small organic molecules. Some key steps in the drug discovery process are based on noncovalent interactions. We have focused our research on the steps involving ligand screening, competitive binding and ‘off-target’ binding. The first paper in this thesis investigated the complicated electrospray ionization process with regards to noncovalent complexes. We have proposed a model that may explain how the equilibrium between a protein and ligand changes during the droplet evaporation/ionization process. The second paper describes an evaluation of an automated chip-based nano-ESI platform for ligand screening. The technique was compared with a previously reported method based on nuclear magnetic resonance (NMR), and excellent correlation was obtained between the results obtained with the two methods. As a general conclusion we believe that the automated nano-ESI/MS should have a great potential to serve as a complementary screening method to conventional HTS. Alternatively, it could be used as a first screening method in an early phase of drug development programs when only small amounts of purified targets are available. In the third article, the advantage of using on-line microdialysis as a tool for enhanced resolution and sensitivity during detection of noncovalent interactions and competitive binding studies by ESI-MS was demonstrated. The microdialysis device was improved and a new approach for competitive binding studies was developed. The last article in the thesis reports studies of noncovalent interactions by means of nanoelectrospray ionization mass spectrometry (nanoESI-MS) for determination of the specific binding of selected drug candidates to HSA. Two drug candidates and two known binders to HSA were analyzed using a competitive approach. The drugs were incubated with the target protein followed by addition of site-specific probes, one at a time. The drug candidates showed predominant affinity to site I (warfarin site). Naproxen and glyburide showed affinity to both sites I and II.
  •  
45.
  • Bergenstråhle, Malin, 1977- (author)
  • Crystalline cellulose in bulk and at interfaces as studied by atomistic computer simulations
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Cellulose is a linear polysaccharide, serving as reinforcement in plant cell walls.Understanding its structure and properties is of importance in the developmentof nanostructured cellulose materials. The aim of this thesis is to address thisquestion by applying the computer simulation technique Molecular Dynamics(MD) onto an atomistic model of a native crystal form of cellulose.A molecular model of crystalline cellulose Iβ was developed and simulatedwith the GROMACS simulation software package.Temperature dependence of the crystal bulk model was investigated. A gradualtransition was observed between 350 K and 500 K in concordance with experimentalresults. The high temperature structure differed from the originalstructure in terms of crystal cell parameters, hydrogen bonding network andelastic modulus.Spin-lattice relaxation times, T1, from solid-state Nuclear Magnetic Resonancespectroscopy were compared with values calculated from the dynamics ofthe C4-H4 vector in MD simulations. Calculated T1 compared well with experimentallyobtained, suggesting well reproduced dynamics. Moreover, a differencein T1 of about a factor 2 was found for C4 atoms at surfaces parallel to differentcrystallographic planes. This supports a proposed explanation regarding anobserved doublet for C4 atoms in the NMR spectrum.Interaction energies between crystalline cellulose and water and 6− hydroxyhexanal(CL) were determined from simulations. Water was found to interactstronger with cellulose than CL. Moreover, the effect of grafting CL onto surfacecellulose chains was examined. For both water and CL interfaces, grafting ledto increased interaction. Electrostatic interactions were dominating in all cases,however grafting increased the importance of van der Waals interactions.The experimental approach to investigate polymer desorption by pulling itfrom a surface by the use of Atomic Force Microscopy (AFM) was enlightenedwith a modelling study. A single cellulose octamer was pulled from a cellulosecrystal into water and cyclohexane. Resulting pull-off energies proved a clearsolvent effect, 300 − 400 [kJ/mole] in cyclohexane and 100 − 200 [kJ/mole] inwater.In general, MD was shown to be useful when applied in combination withfeasible experimental techniques such as NMR and AFM to increase the fundamentalunderstanding of cellulose structure and properties.
  •  
46.
  • Bettini, Eleonora (author)
  • Influence of carbides and nitrides on corrosion initiation of advanced alloys : A local probing study
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • Advanced alloys often present precipitated carbides and nitrides in their microstructure following exposure to elevated temperatures. These secondary phases are usually undesirable, because potentially deleterious for the corrosion and mechanical performances of the material. Carbides and nitrides are enriched in key alloying elements that are subtracted from their surrounding matrix areas, creating alloying element depleted zones, which might become initial sites for corrosion initiation. In this study, the influence of micro- and nano-sized precipitated carbides and nitrides on the corrosion initiation of biomedical CoCrMo alloys and duplex stainless steels has been investigated at microscopic scale, by using a combination of local probing techniques. The microstructures of the alloys were first characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and magnetic force microscopy (MFM). The Volta potential mapping of carbides and nitrides revealed their higher nobility compared to the matrix, and particularly compared to their surrounding areas, suggesting the occurrence of some alloying element depletion in the latter locations, which may lead to a higher susceptibility for corrosion initiation. In-situ electrochemical AFM studies performed at room temperature showed passive behavior for large potential ranges for both alloy families, despite the presence of the precipitated carbides or nitrides. At high anodic applied potential, at which transpassive dissolution occurs, preferential dissolution started from the areas adjacent to the precipitated carbides and nitrides, in accordance with the Volta potential results. Thus, the presence of carbides and nitrides doesn’t largely affect the corrosion resistance of the tested advanced alloys, which maintain passive behavior when exposed to highly concentrated chloride solutions at room temperature with no applied potential. The effect of nitrides on the corrosion initiation of duplex stainless steels was investigated also at temperatures above the critical pitting temperature (CPT). Depending on the type, distribution and size range of the precipitated nitrides different corrosion behaviors were observed. Intragranular (quenched-in) nano-sized nitrides (ca. 50-100 nm) finely dispersed in the ferrite grains have a minor influence on the corrosion resistance of the material at temperatures above the CPT, while larger intergranular (isothermal) nitrides (ca. 80-250 nm) precipitated along the phase boundaries cause a detrimental reduction of the corrosion resistance of the material, in particular of the austenite phase
  •  
47.
  •  
48.
  • Bjurhager, Ingela (author)
  • Effects of Cell Wall Structure on Tensile Properties of Hardwood : Effect of down-regulation of lignin on mechanical performance of transgenic hybrid aspen. Effect of chemical degradation on mechanical performance of archaeological oak from the Vasa ship.
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • Wood is a complex material and the mechanical properties are influencedby a number of structural parameters. The objective of this study has been toinvestigate the relationship between the structure and the mechanical propertiesof hardwood. Two levels were of special interest, viz. the cellular structureand morphology of the wood, and the ultra-structure of the cell wall. In thenext step, it was of interest to examine how the mechanical properties ofhardwood change with spontaneous/induced changes in morphology and/orchemical composition beyond the natural variation found in nature. Together, this constituted the framework and basis for two larger projects,one on European aspen (Populus tremula) and hybrid aspen (Populus tremulax Populus tremuloides), and one on European oak (Quercus robur). Amethodology was developed where the concept of relative density and compositemechanics rules served as two useful tools to assess the properties ofthe cell wall. Tensile testing in the longitudinal direction was combined withchemical examination of the material. This approach made it possible to revealthe mechanical role of the lignin in the cell wall of transgenic aspen trees,and investigate the consequences of holocellulose degradation in archaeologicaloak from the Vasa ship. The study on transgenic aspen showed that a major reduction in lignin inPopulus leads to a small but significant reduction in the longitudinal stiffness.The longitudinal tensile strength was not reduced. The results are explainableby the fact that the load-bearing cellulose in the transgenic aspen retained itscrystallinity, aggregate size, microfibril angle, and absolute content per unitvolume. The results can contribute to the ongoing task of investigating andpinpointing the precise function of lignin in the cell wall of trees. The mechanical property study on Vasa oak showed that the longitudinaltensile strength is severely reduced in several regions of the ship, andthat the reduction correlates with reduced average molecular weight of theholocellulose. This could not have been foreseen without a thorough mechanicaland chemical investigation, since the Vasa wood (with exception fromthe bacterially degraded surface regions) is morphologically intact and witha micro-structure comparable to that of recent oak. The results can be usedin the ongoing task of mapping the condition of the Vasa wood.
  •  
49.
  • Bjurhager, Ingela (author)
  • Mechanical behaviour of hardwoods : effects from cellular and cell wall structures
  • 2008
  • Licentiate thesis (other academic/artistic)abstract
    • Syftet med den här avhandlingen var att undersöka mekaniska egenskaper hos olika arter av lövträd, och koppla egenskaperna till cell- och cellväggsstrukturen i materialet. Arterna som omfattades av undersökningen var Europeisk asp (Populus tremula), hybridasp (Populus tremula x Populus tremuloides) och ek (Quercus robur). Arterna inom familjen Populus, inklusive den snabbväxande hybridaspen, har på senare tid kommit att användas inom ett stort antal projekt inom genforskningen. Det har i sin tur ökat behovet av noggrannare bestämning av mekaniska egenskaper hos dessa arter. Ek har sedan tusentals år tillbaka varit ett populärt konstruktionsmaterial; något som har resulterat i ett stort antal arkeologiska ekfynd. Konservering av dessa inkluderar ofta dimensionsstabilisering med hjälp av polyetylen-glykol (PEG); en kemikalie som man vet påverkar de mekaniska egenskaperna. I vilken utstäckning detta sker är däremot inte helt klarlagt. Studien på euoropeisk asp och hybridasp inkluderade utveckling av en ny metod för provning av små juvenila prov i grönt tillstånd. Töjningsmätningar gjordes med hjälp av digital speckelfotografering (DSP). Axiell dragstyvhet och draghållfasthet var av speciellt intresse. Sämre mekaniska egenskaper hos hybridaspen korrelerade med medelvärden på densitet, som var lägre för hybriden än för den Europeiska aspen. Ek undersöktes i svällt tillstånd, där svällningen inducerades med hjälp av PEG (molekylvikt 600). Axiell dragstyvhet och draghållfasthet samt radiell tryckstyvhet och ytspänning undersöktes. Töjningsmätningar i axiell riktning gjordes med hjälp av videoextensiometer, medan töjning i radiell riktning gjordes med hjälp av DSP. Övrig karakterisering av materialet inkluderade scanning electron microscopy (SEM), röntgenmikrotomografi och wide angle X-ray scattering (WAXS) för bestämning av mikrofibrillvinkel. Axiell dragstyvhet och draghållfasthet påverkades bara marginellt av PEG-behandlingen. WAXS-mätningarna visade att mikrofibrillvinkeln i materialet var mycket liten. Därigenom blir de mekaniska egenskaperna i axiell riktning till stor del beroende av mikrofibrillerna, vilket samtidigt minimerar den mjukningseffekt som PEG-impregneringen har på cellväggsmatrisen. De mekaniska egenskaperna i radiell kompression påverkades däremot starkt negativt av impregneringen. Detta antogs bero på den försvagande och uppmjukande effekt som PEG:en har på de radiellt orienterade märgstrålarna i veden.
  •  
50.
  • Björk, Anders, 1969- (author)
  • Chemometric and signal processing methods for real time monitoring and modeling : applications in the pulp and paper industry
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • In the production of paper, the quality of the pulp is an important factor both for the productivity and for the final quality. Reliable real-time measurements of pulp quality are therefore needed. One way is to use acoustic or vibration sensors that give information-rich signals and place the sensors at suitable locations in a pulp production line. However, these sensors are not selective for the pulp properties of interest. Therefore, advanced signal processing and multivariate calibration are essential tools. The current work has been focused on the development of calibration routes for extraction of information from acoustic sensors and on signal processing algorithms for enhancing the information-selectivity for a specific pulp property or class of properties. Multivariate analysis methods like Principal Components Analysis (PCA), Partial Least Squares (PLS) and Orthogonal Signal Correction (OSC) have been used for visualization and calibration. Signal processing methods like Fast Fourier Transform (FFT), Fast Wavelet Transform (FWT) and Continuous Wavelet Transform (CWT) have been used in the development of novel signal processing algorithms for extraction of information from vibrationacoustic sensors. It is shown that use of OSC combined with PLS for prediction of Canadian Standard Freeness (CSF) using FFT-spectra produced from vibration data on a Thermo Mechanical Pulping (TMP) process gives lower prediction errors and a more parsimonious model than PLS alone. The combination of FFT and PLS was also used for monitoring of beating of kraft pulp and for screen monitoring. When using regular FFT-spectra on process acoustic data the obtained information tend to overlap. To circumvent this two new signal processing methods were developed: Wavelet Transform Multi Resolution Spectra (WT-MRS) and Continuous Wavelet Transform Fibre Length Extraction (CWT-FLE). Applying WT-MRS gave PLS-models that were more parsimonious with lower prediction error for CSF than using regular FFT-Spectra. For a Medium Consistency (MC) pulp stream WT-MRS gave predictions errors comparable to the reference methods for CSF and Brightness. The CWT-FLE method was validated against a commercial fibre length analyzer and good agreement was obtained. The CWT-FLE-curves could therefore be used instead of other fibre distribution curves for process control. Further, the CWT-FLE curves were used for PLS modelling of tensile strength and optical parameters with good results. In addition to the mentioned results a comprehensive overview of technologies used with acoustic sensors and related applications has been performed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 425
Type of publication
doctoral thesis (305)
licentiate thesis (119)
artistic work (1)
reports (1)
Type of content
other academic/artistic (425)
Author/Editor
Wågberg, Lars, Profe ... (21)
Albertsson, Ann-Chri ... (17)
Hedenqvist, Mikael, ... (16)
Lindbergh, Göran, Pr ... (14)
Jonsson, Mats, Profe ... (14)
Johansson, Mats, Pro ... (13)
show more...
Wågberg, Lars (12)
Gedde, Ulf, Professo ... (11)
Leygraf, Christofer, ... (11)
Hakkarainen, Minna, ... (9)
Ek, Monica, professo ... (9)
Ramström, Olof, Prof ... (9)
Lindström, Mikael, P ... (8)
Berglund, Lars, Prof ... (8)
Furo, Istvan, Profes ... (7)
Karlsson, Sigbritt, ... (7)
Claesson, Per, Profe ... (7)
Lindbergh, Göran (6)
Pan, Jinshan, Profes ... (6)
Westermark, Mats, Pr ... (6)
Claesson, Per M. (5)
Albertsson, Ann-Chri ... (5)
Hakkarainen, Minna, ... (5)
Li, Jiebing, Docent (5)
Lindström, Mikael E. ... (5)
Berglund, Lars (4)
Rutland, Mark W., Pr ... (4)
Kloo, Lars (4)
Engvall, Klas, Profe ... (4)
Gedde, Ulf W. (4)
Emmer, Åsa (4)
Lindström, Mikael (4)
Claesson, Per M., Pr ... (4)
Emmer, Åsa, Professo ... (4)
Malmström Jonsson, E ... (4)
Kloo, Lars, Professo ... (4)
Ramström, Olof (3)
Roeraade, Johan (3)
Wågberg, Lars, 1956- (3)
Finne Wistrand, Anna ... (3)
Pan, Jinshan (3)
Jonsson, Mats (3)
Järås, Sven (3)
Engstrand, Per, Prof ... (3)
Neretnieks, Ivars (3)
Wågberg, Lars, Prof (3)
Doghieri, Ferruccio, ... (3)
Larsson, Per A., 198 ... (3)
Borg-Karlson, Anna K ... (3)
Behm, Mårten (3)
show less...
University
Royal Institute of Technology (425)
Umeå University (3)
Mälardalen University (2)
University of Borås (2)
Lund University (1)
Mid Sweden University (1)
show more...
Linnaeus University (1)
Högskolan Dalarna (1)
show less...
Language
English (425)
Research subject (UKÄ/SCB)
Natural sciences (215)
Engineering and Technology (187)
Medical and Health Sciences (11)
Agricultural Sciences (5)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view