SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1538 8514 "

Sökning: L773:1538 8514

  • Resultat 1-50 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alao, John Patrick, 1973, et al. (författare)
  • Inhibition of type I histone deacetylase increases resistance of checkpoint-deficient cells to genotoxic agents through mitotic delay
  • 2009
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 8, s. 2606-2615
  • Tidskriftsartikel (refereegranskat)abstract
    • Histone deacetylase (HDAC) inhibitors potently inhibit tumor growth and are currently being evaluated for their efficacy as chemosensitizers and radiosensitizers. This efficacy is likely to be limited by the fact that HDACinhibitors also induce cell cycle arrest. Deletion of the class I HDACRpd3 has been shown to specifically suppress the sensitivity of Saccharomyces cerevisiae DNA damage checkpoint mutants to UV and hydroxyurea. We show that in the fission yeast Schizosaccharomyces pombe, inhibition of the homologous class I HDACspe cifically suppresses the DNA damage sensitivity of checkpoint mutants. Importantly, the prototype HDACinhibitor Trichostatin A also suppressed the sensitivity of DNA damage checkpoint but not of DNA repair mutants to UV and HU. TSA suppressed DNA damage activity independently of the mitogen-activated protein kinase–dependent and spindle checkpoint pathways. We show that TSA delays progression into mitosis and propose that this is the main mechanism for suppression of the DNA damage sensitivity of S. pombe checkpoint mutants, partially compensating for the loss of the G2 checkpoint pathway. Our studies also show that the ability of HDACinhibitors to suppress DNA damage sensitivity is not species specific. Class I HDACs are the major target of HDAC inhibitors and cancer cells are often defective in checkpoint activation. Effective use of these agents as chemosensitizers and radiosensitizers may require specific treatment schedules that circumvent their inhibition of cell cycle progression.
  •  
2.
  •  
3.
  •  
4.
  • Borgatti, Antonella, et al. (författare)
  • Safe and Effective Sarcoma Therapy through Bispecific Targeting of EGFR and uPAR.
  • 2017
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 16:5, s. 956-965
  • Tidskriftsartikel (refereegranskat)abstract
    • Sarcomas differ from carcinomas in their mesenchymal origin. Therapeutic advancements have come slowly so alternative drugs and models are urgently needed. These studies report a new drug for sarcomas that simultaneously targets both tumor and tumor neovasculature. eBAT is a bispecific angiotoxin consisting of truncated, deimmunized Pseudomonas exotoxin fused to epidermal growth factor (EGF) and the amino terminal fragment (ATF) of urokinase. Here, we study the drug in an in vivo "ontarget" companion dog trial since eBAT effectively kills canine hemangiosarcoma (HSA) and human sarcoma cells in vitro. We reasoned the model has value due to the common occurrence of spontaneous sarcomas in dogs and a limited lifespan allowing for rapid accrual and data collection. Splenectomized dogs with minimal residual disease were given one cycle of eBAT followed by adjuvant doxorubicin in an adaptive dose-finding, phase I-II study of 23 dogs with spontaneous, stage I-II, splenic HSA. eBAT improved 6-month survival from <40% in a comparison population to ~70% in dogs treated at a biologically active dose (50 µg/kg). Six dogs were long-term survivors, living >450 days. eBAT abated expected toxicity associated with EGFR-targeting, a finding supported by mouse studies. Urokinase plasminogen activator receptor (uPAR) and EGFR are targets for human sarcomas, so thorough evaluation is crucial for validation of the dog model. Thus, we validated these markers for human sarcoma targeting in the study of 212 human and 97 canine sarcoma samples. Our results support further translation of eBAT for human patients with sarcomas and perhaps other EGFR-expressing malignancies.
  •  
5.
  •  
6.
  • Cetinkaya, Cihan, et al. (författare)
  • Combined IFN-gamma and retinoic acid treatment targets the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in MYCN-amplified neuroblastoma cells
  • 2007
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 6:10, s. 2634-2641
  • Tidskriftsartikel (refereegranskat)abstract
    • The MYCN protooncogene is involved in the control of cell proliferation, differentiation, and survival of neuroblasts. Deregulation of MYCN by gene amplification contributes to neuroblastoma development and is strongly correlated to advanced disease and poor outcome, emphasizing the urge for new therapeutic strategies targeting MYCN function. The transcription factor N-Myc, encoded by MYCN, regulates numerous genes together with its partner Max, which also functions as a cofactor for the Mad/Mnt family of Myc antagonists/transcriptional repressors. We and others have previously reported that IFN-gamma synergistically potentiates retinoic acid (RA)induced sympathetic differentiation and growth inhibition in neuroblastoma cells. This study shows that combined treatment of MYCN-amplified neuroblastorna cells with RA+IFN-gamma down-regulates N-Myc protein expression through increased protein turnover, up-regulates Mad1 mRNA and protein, and reduces N-Myc/Max heteroclimerization. This results in a shift of occupancy at the ornithine decarboxylase N-Myc/Mad1 target promoter in vivo from N-Myc/Max to Madl/Max predominance, correlating with histone H4 deacetylation, indicative of a chromatin structure typical of a transcriptionally repressed state. This is further supported by data showing that RA + IFN-gamma treatment strongly represses expression of N-Myc/Mad1 target genes ornithine decarboxylase and hTERT. Our results suggest that combined IFN-gamma and RA signaling can form a basis for new therapeutic strategies targeting N-Myc function for patients with high-risk, MYCN-amplified neuroblastoma.
  •  
7.
  • Chantzi, Efthymia, et al. (författare)
  • Exhaustive in vitro evaluation of the 9-drug cocktail CUSP9 for treatment of glioblastoma using COMBImageDL
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514.
  • Tidskriftsartikel (refereegranskat)abstract
    • The CUSP9 protocol (aprepitant, auranofin, captopril, celecoxib, disulfiram, itraconazole, minocycline, quetiapine, sertraline) is currently undergoing a clinical trial as add-on treatment to standard-of-care temozolomide for recurrent glioblastoma. Although the theoretical repurposing rationale of this 9-drug cocktail is well defined, there is no in vitro experimental data yet supporting its superiority over all its plausible subsets. Such an exhaustive in vitro evaluation may provide preliminary evidence of whether only a fraction of all 9 drugs is needed to achieve an equivalent or even higher effect. Such information could be further used to guide and optimize individualized glioblastoma therapy selection both in terms of efficacy and adverse effects.Here, we employed COMBImageDL, a deep learning improved version of our recently developed COMBImage2 framework, to design, perform and analyze an exhaustive in vitro experiment of the CUSP9 protocol. More specifically, all 511 plausible subsets were evaluated as add-on treatment to temozolomide on a drug resistant glioblastoma cell line (M059K), by combining endpoint cell viability analysis and quantitative live-cell imaging. The experiment was performed in quadruplicate (eight 384-well plates, > 100GB of image data). Fixed clinically achievable concentrations were used for all drugs.Our results suggest that only disulfiram from the CUSP9 cocktail is required, together with temozolomide, in order to induce major changes in cell viability, confluence and morphology. Only slightly increased effects were observed by a few unique higher-order subsets of the CUSP9 protocol, which also contained disulfiram. This finding indicates that for the particular glioblastoma cell line used, the whole CUSP9 protocol could in principle be replaced solely with disulfiram. Notably, it may be worth testing in vitro the few slightly more potent higher-order subsets on primary patient derived glioblastoma cells. This work demonstrates the feasibility and potential of performing exhaustive in vitro evaluation of higher-order drug cocktails prior to subsequent assessment for clinical use. Although the experimental in vitro disease models are not optimal, they can still pinpoint which among all plausible subsets should be further considered. From a personalized therapy selection perspective, in vitro sensitivity testing of primary patient derived tumor cells could thereby advance from the current practice based on single drugs and only cytotoxicity readouts to also include higher-order drug cocktails and quantitative live-cell imaging.
  •  
8.
  • Chen, Ying, et al. (författare)
  • Enhanced colonic tumorigenesis in alkaline sphingomyelinase (NPP7) knockout mice.
  • 2015
  • Ingår i: Molecular Cancer Therapeutics. - 1538-8514. ; 14:1, s. 259-267
  • Tidskriftsartikel (refereegranskat)abstract
    • Intestinal alkaline sphingomyelinase (alk-SMase) generates ceramide and inactivates platelet-activating factor (PAF) and is previously suggested to have anticancer properties. The direct evidence is still lacking. We studied colonic tumorigenesis in alk-SMase knockout (KO) mice. Formation of aberrant crypt foci (ACF) was examined after azoxymethane (AOM) injection. Tumor was induced by AOM alone, a conventional AOM/dextran sulfate sodium (DSS) treatment, and an enhanced AOM/DSS method. beta-catenin was determined by immunohistochemistry, PAF levels by ELISA and sphingomyelin metabolites by mass spectrometry. Without treatment, spontaneous tumorigenesis was not identified but the intestinal mucosa appeared thicker in KO than in wild type (WT) littermates. AOM alone induced more ACF in KO mice but no tumors 28 weeks after injection. However, combination of AOM/DSS treatments induced colonic tumors and the incidence was significantly higher in KO than in WT mice. By the enhanced AOM/DSS method tumor number per mouse increased 4.5 times and tumor size 1.8 times in KO compared to WT mice. While all tumors were adenomas in WT mice, 32% were adenocarcinomas in KO mice. Compared to WT mice, cytosol expression of beta-catenin was significantly decreased and nuclear translocation in tumors was more pronounced in KO mice. Lipid analysis showed decreased ceramide in small intestine and increased sphingosine-1-phosphate in both small intestine and colon in nontreated KO mice. PAF levels in feces were significantly higher in the KO mice after AOM/DSS treatment. In conclusion lack of alk-SMase markedly increases AOM/DSS induced colonic tumorigenesis associated with decreased ceramide and increased sphingosine-1-phosphate and PAF levels.
  •  
9.
  • Christiansson, Lisa, et al. (författare)
  • The Tyrosine Kinase Inhibitors Imatinib and Dasatinib Reduce Myeloid Suppressor Cells and Release Effector Lymphocyte Responses
  • 2015
  • Ingår i: Molecular Cancer Therapeutics. - : American Association for Cancer Research. - 1535-7163 .- 1538-8514. ; 14:5, s. 1181-1191
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune escape mechanisms promote tumor progression and are hurdles of cancer immunotherapy. Removing immunosuppressive cells before treatment can enhance efficacy. Tyrosine kinase inhibitors (TKI) may be of interest to combine with immunotherapy, as it has been shown that the inhibitor sunitinib reduces myeloid suppressor cells in patients with renal cell carcinoma and dasatinib promotes expansion of natural killer-like lymphocytes in chronic myeloid leukemia (CML). In this study, the capacity of dasatinib and imatinib to reduce myeloid suppressor cells and to induce immunomodulation in vivo was investigated ex vivo. Samples from CML patients treated with imatinib (n = 18) or dasatinib (n = 14) within a Nordic clinical trial (clinicalTrials.gov identifier: NCT00852566) were investigated for the presence of CD11b(+)CD14(-)CD33(+) myeloid cells and inhibitorymolecules (arginase I, myeloperoxidase, IL10) as well as the presence of natural killer cells, T cells (naive/memory), and stimulatory cytokines (IL12, IFN gamma, MIG, IP10). Both imatinib and dasatinib decreased the presence of CD11b(+)CD14(-)CD33(+) myeloid cells as well as the inhibitory molecules and the remaining myeloid suppressor cells had an increased CD40 expression. Monocytes also increased CD40 after therapy. Moreover, increased levels of CD40, IL12, natural killer cells, and experienced T cells were noted after TKI initiation. The presence of experienced T cells was correlated to a higher IFNg and MIG plasma concentration. Taken together, the results demonstrate that both imatinib and dasatinib tilted the immunosuppressive CML tumor milieu towards promoting immune stimulation. Hence, imatinib and dasatinib may be of interest to combine with cancer immunotherapy. (C) 2015 AACR.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Gullbo, Joachim, et al. (författare)
  • Antitumor activity of the novel melphalan containing tripeptide J3 (L-prolyl-melphalanyl-p-L-fluorophenylalanine ethyl ester) : Comparison with its m-L-sarcolysin analogue P2
  • 2003
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 2:12, s. 1331-1339
  • Tidskriftsartikel (refereegranskat)abstract
    • Peptichemio (PTC), a mixture of six oligopeptides all containing m-L-sarcolysin, has previously shown impressive results in clinical trials. The tripeptide P2 (L-prolyl-m-L-sarcolysyl-p-L-fluorophenylalanine ethyl ester) has been suggested as the main contributor to PTC activity. In contrast to its analogue melphalan, m-L-sarcolysin never reached clinical use. To allow a direct comparison, the corresponding melphalan containing tripeptide J3 (L-prolyl-L-melphalanyl-p-L-fluorophenylalanine ethyl ester) was synthesized and its activity was compared with that of P2; the activities of melphalan and m-L-sarcolysin were studied in parallel. Cytotoxic activity in human tumor cell lines and some fresh human tumor specimens were analyzed as well as effects on cellular metabolism, macromolecular synthesis, and preliminary evaluation of the cell death characteristics. The results show that melphalan and m-L-sarcolysin display similar activity in these systems and that the tripeptides were more active than their parent monomers. Surprisingly however, the melphalan containing tripeptide J3 demonstrated a significantly more rapid and stronger activity than the m-L-sarcolysin analogue P2. Finally, the in vivo toxicity and activity of melphalan and J3 were investigated in mice bearing human leukemia cells in s.c. fibers. The in vitro results seem translatable into the in vivo situation, demonstrating better antileukemic effect of J3 but similar side effects as melphalan.
  •  
14.
  • Hansen, Torben Frøstrup, et al. (författare)
  • Epidermal Growth Factor-like Domain 7 Predicts Response to First-Line Chemotherapy and Bevacizumab in Patients with Metastatic Colorectal Cancer.
  • 2014
  • Ingår i: Molecular Cancer Therapeutics. - 1538-8514. ; 13:9, s. 2238-2245
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of approved antiangiogenic drugs is constantly growing and emphasizes the need for predictive biomarkers. The aim of this study was to analyze the predictive value of epidermal growth factor-like domain 7 (EGFL7) and microRNA-126 (miR126) to first-line chemotherapy combined with bevacizumab, in patients with metastatic colorectal cancer (mCRC). A total of 158 patients from two different, but comparable, cohorts were included. Analyses were performed on tumor tissue from the primary tumor either based on a whole-tumor resection or an endoscopic biopsy. EGFL7 was analyzed by immunohistochemistry (IHC) and miR126 by in situ hybridization (ISH). Both biomarkers were quantified by image-guided analyses. Endpoints were response rate (RR) and progression-free survival (PFS). The EGFL7 vessel area (VA) in tumor resections was closely related to treatment response with a median EGFL7 VA in responding patients of 4 [95% confidence interval (CI), 4-6] compared with 8.5 (95% CI, 7-11) in nonresponders, P = 0.0008. This difference translated into a borderline significant difference in PFS (P = 0.06). Furthermore, a significant relationship between high EGFL7 VA and KRAS mutation was detected (P = 0.049). The results showed no significant relationship between the miR126 VA and the clinical endpoints. Our study suggests a predictive value of EGFL7 in regard to first-line chemotherapy and bevacizumab in patients with mCRC and supports the mechanism of a dual blocking of the vascular endothelial growth factor-A and EGFL7 axis in this setting. Mol Cancer Ther; 13(9); 1-8. ©2014 AACR.
  •  
15.
  • Hernlund, Emma, et al. (författare)
  • Ovarian carcinoma cells with low levels of beta-F1-ATPase are sensitive to combined platinum and 2-deoxy-D-glucose treatment.
  • 2009
  • Ingår i: Molecular Cancer Therapeutics. - : American Association for Cancer Research. - 1535-7163 .- 1538-8514. ; 8:7, s. 1916-1923
  • Tidskriftsartikel (refereegranskat)abstract
    • We have here examined chemopotentiating effects of glycolysis inhibitor 2-deoxy-d-glucose (DG) in two epithelial ovarian carcinoma (EOC) cell lines and 17 freshly isolated ascitic EOC cell samples, and we identify low expression of the beta-F1-ATPase involved in mitochondrial ATP production as a candidate marker for sensitivity to this strategy. Although in the majority of samples, DG per se did not induce apoptosis, cotreatment with DG potentiated apoptosis and total antiproliferative effects of cisplatin and, to a lesser degree, carboplatin. In the cell lines, combination treatment with DG and cisplatin or carboplatin at noninhibitory concentrations prevented posttreatment regrowth in drug-free medium over a total of 5 days. DG per se allowed complete recuperation in drug-free medium. The more platinum-resistant a cell line was, the more sensitive it was to potentiation by DG and showed higher glucose uptake, DG-sensitive lactate production, and lower beta-F1-ATPase levels. In the ascitic samples, DG reduced the median IC(50) for cisplatin by 68% and, in the most sensitive samples, up to 90%, and DG-mediated potentiation correlated with low expression of beta-F1-ATPase. By contrast, cisplatin sensitivity did not correlate with beta-F1-ATPase levels. The findings validate targeting cancer cell glucose metabolism for potentiating platinum chemotherapy in EOC and indicate that reduced beta-F1-ATPase/oxidative phosphorylation distinguishes cells that are amenable to this strategy.
  •  
16.
  • Hyvonen, Maija, et al. (författare)
  • Novel Target for Peptide-Based Imaging and Treatment of Brain Tumors
  • 2014
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 13:4, s. 996-1007
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant gliomas are associated with high mortality due to infiltrative growth, recurrence, and malignant progression. Even with the most efficient therapy combinations, median survival of the glioblastoma multiforme (grade 4) patients is less than 15 months. Therefore, new treatment approaches are urgently needed. We describe here identification of a novel homing peptide that recognizes tumor vessels and invasive tumor satellites in glioblastomas. We demonstrate successful brain tumor imaging using radiolabeled peptide in whole-body SPECT/CT imaging. Peptide-targeted delivery of chemotherapeutics prolonged the lifespan of mice bearing invasive brain tumors and significantly reduced the number of tumor satellites compared with the free drug. Moreover, we identified mammary-derived growth inhibitor (MDGI/H-FABP/FABP3) as the interacting partner for our peptide on brain tumor tissue. MDGI was expressed in human brain tumor specimens in a grade-dependent manner and its expression positively correlated with the histologic grade of the tumor, suggesting MDGI as a novel marker for malignant gliomas. Mol Cancer Ther; 13(4); 996-1007. (C)2014 AACR.
  •  
17.
  • Johansson, Gunnar, et al. (författare)
  • Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors.
  • 2008
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 7:5, s. 1237-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant peripheral nerve sheath tumors (MPNST) are chemoresistant sarcomas with poor 5-year survival that arise in patients with neurofibromatosis type 1 (NF1) or sporadically. We tested three drugs for single and combinatorial effects on collected MPNST cell lines and in MPNST xenografts. The mammalian target of rapamycin complex 1 inhibitor RAD001 (Everolimus) decreased growth 19% to 60% after 4 days of treatment in NF1 and sporadic-derived MPNST cell lines. Treatment of subcutaneous sporadic MPNST cell xenografts with RAD001 significantly, but transiently, delayed tumor growth, and decreased vessel permeability within xenografts. RAD001 combined with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib caused additional inhibitory effects on growth and apoptosis in vitro, and a small but significant additional inhibitory effect on MPNST growth in vivo that were larger than the effects of RAD001 with doxorubicin. RAD001 plus erlotinib, in vitro and in vivo, reduced phosphorylation of AKT and total AKT levels, possibly accounting for their additive effect. The results support the consideration of RAD001 therapy in NF1 patient and sporadic MPNST. The preclinical tests described allow rapid screening strata for drugs that block MPNST growth, prior to tests in more complex models, and should be useful to identify drugs that synergize with RAD001.
  •  
18.
  • Johansson, Gustav, et al. (författare)
  • Monitoring circulating tumor DNA during surgical treatment in patients with gastrointestinal stromal tumors
  • 2021
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 20:12, s. 2568-2576
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of patients diagnosed with advanced gastrointestinal stromal tumors (GISTs) are successfully treated with a combination of surgery and tyrosine kinase inhibitors (TKIs). However, it remains challenging to monitor treatment efficacy and identify relapse early. Here, we utilized a sequencing strategy based on molecular barcodes and developed a GIST-specific panel to monitor tumor-specific and TKI resistance mutations in cell-free DNA and applied the approach to patients undergoing surgical treatment. Thirty-two patients with GISTs were included, and 161 blood plasma samples were collected and analyzed at routine visits before and after surgery and at the beginning, during, and after surgery. Patients were included regardless of their risk category. Our GIST-specific sequencing approach allowed detection of tumor-specific mutations and TKI resistance mutations with mutant allele frequency < 0.1%. Circulating tumor DNA (ctDNA) was detected in at least one timepoint in nine of 32 patients, ranging from 0.04% to 93% in mutant allele frequency. High-risk patients were more often ctDNA positive than other risk groups (P < 0.05). Patients with detectable ctDNA also displayed higher tumor cell proliferation rates (P < 0.01) and larger tumor sizes (P < 0.01). All patients who were ctDNA positive during surgery became negative after surgery. Finally, in two patients who progressed on TKI treatment, we detected multiple resistance mutations. Our data show that ctDNA may become a clinically useful biomarker in monitoring treatment efficacy in patients with high-risk GISTs and can assist in treatment decision making.
  •  
19.
  •  
20.
  •  
21.
  • Kashif, Muhammad, et al. (författare)
  • A Pragmatic Definition of Therapeutic Synergy Suitable for Clinically Relevant In Vitro Multicompound Analyses
  • 2014
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 13:7, s. 1964-1976
  • Tidskriftsartikel (refereegranskat)abstract
    • For decades, the standard procedure when screening for candidate anticancer drug combinations has been to search for synergy, defined as any positive deviation from trivial cases like when the drugs are regarded as diluted versions of each other (Loewe additivity), independent actions (Bliss independence), or no interaction terms in a response surface model (no interaction). Here, we show that this kind of conventional synergy analysis may be completely misleading when the goal is to detect if there is a promising in vitro therapeutic window. Motivated by this result, and the fact that a drug combination offering a promising therapeutic window seldom is interesting if one of its constituent drugs can provide the same window alone, the largely overlooked concept of therapeutic synergy (TS) is reintroduced. In vitro TS is said to occur when the largest therapeutic window obtained by the best drug combination cannot be achieved by any single drug within the concentration range studied. Using this definition of TS, we introduce a procedure that enables its use in modern massively parallel experiments supported by a statistical omnibus test for TS designed to avoid the multiple testing problem. Finally, we suggest how one may perform TS analysis, via computational predictions of the reference cell responses, when only the target cell responses are available. In conclusion, the conventional error-prone search for promising drug combinations may be improved by replacing conventional (toxicology-rooted) synergy analysis with an analysis focused on (clinically motivated) TS. 
  •  
22.
  • Kashyap, Abhishek S., et al. (författare)
  • Antagonists of IGF : Vitronectin Interactions Inhibit IGF-I-Induced Breast Cancer Cell Functions
  • 2016
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 15:7, s. 1602-1613
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide proof-of-concept evidence for a new class of therapeutics that target growth factor: extracellular matrix (GF: ECM) interactions for the management of breast cancer. Insulinlike growth factor-I (IGF-I) forms multiprotein complexes with IGF-binding proteins (IGFBP) and the ECM protein vitronectin (VN), and stimulates the survival, migration and invasion of breast cancer cells. For the first time we provide physical evidence for IGFBP-3: VN interactions in breast cancer patient tissues; these interactions were predominantly localized to tumor cell clusters and in stroma surrounding tumor cells. We show that disruption of IGF-I: IGFBP: VN complexes with L27-IGF-II inhibits IGF-I: IGFBP: VN-stimulated breast cancer cell migration and proliferation in two-and three-dimensional assay systems. Peptide arrays screened to identify regions critical for the IGFBP-3/-5: VN and IGF-II: VN interactions demonstrated IGFBP-3/-5 and IGF-II binds VN through the hemopexin-2 domain, and VN binds IGFBP-3 at residues not involved in the binding of IGF-I to IGFBP-3. IGFBP-interacting VN peptides identified from these peptide arrays disrupted the IGF-I: IGFBP: VN complex, impeded the growth of primary tumor-like spheroids and, more importantly, inhibited the invasion of metastatic breast cancer cells in 3D assay systems. These studies provide first-in-field evidence for the utility of small peptides in antagonizing GF: ECM-mediated biologic functions and present data demonstrating the potential of these peptide antagonists as novel therapeutics.
  •  
23.
  • Khazenzon, Natalya M, et al. (författare)
  • Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro
  • 2003
  • Ingår i: Molecular Cancer Therapeutics. - 1538-8514. ; 2:10, s. 985-994
  • Tidskriftsartikel (refereegranskat)abstract
    • Using gene array technology, we recently observed for the first time an up-regulation of laminin alpha4 chain in human gliomas. The data were validated by semiquantitative reverse transcription-PCR for RNA expression and immunohistochemistry for protein expression. Moreover, increase of the alpha4 chain-containing laminin-8 correlated with poor prognosis for patients with brain gliomas. Therefore, we hypothesized that inhibition of laminin-8 expression by a new generation of highly specific and stable antisense oligonucleotides (Morpholino) against chains of laminin-8 could slow or stop the spread of glioma and its recurrence and thus might be a promising approach for glioma therapy. We next sought to establish an in vitro model to test the feasibility of this approach and to optimize conditions for Morpholino treatment. To develop a model, we used human glioblastoma multiforme cell lines M059K and U-87MG cocultured with normal human brain microvascular endothelial cells (HBMVEC). Using Western blot analysis and immunohistochemistry, we confirmed that antisense treatment effectively blocked laminin-8 protein synthesis. Antisense oligonucleotides against both alpha4 and beta1 chains of laminin-8 were able to block significantly the invasion of cocultures through Matrigel. On average, the invasion was blocked by 62% in cocultures of U-87MG with HBMVEC and by 53% in cocultures of M059K with HBMVEC. The results show that laminin-8 may contribute to glioma progression and recurrence not only as part of the neovascularization process but also by directly increasing the invasive potential of tumor cells.
  •  
24.
  •  
25.
  • Lindholm, Petra, et al. (författare)
  • Cyclotides : a novel type of cytotoxic agents
  • 2002
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 1:6, s. 365-369
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytotoxic activities of three naturally occurring macrocyclic peptides (cyclotides) isolated from the two violets, Viola arvensis Murr. and Viola odorata L., were investigated. A nonclonogenic fluorometric microculture assay was used to examine cytotoxicity in a panel of 10 human tumor cell lines representing defined types of cytotoxic drug resistance. Additionally, primary cultures of tumor cells from patients, and for comparison normal lymphocytes, were used to quantify cytotoxic activity. All three cyclotides, varv A, varv F, and cycloviolacin O2, exhibited strong cytotoxic activities, which varied in a dose-dependent manner. Cycloviolacin O2 was the most potent in all cell lines (IC50 0.1– 0.3 _M), followed by varv A (IC50 2.7–6.35 _M) and varv F (IC50 2.6 –7.4 _M), respectively. Activity profiles of the cyclotides differed significantly from those of antitumor drugs in clinical use, which may indicate a new mode of action. This, together with the exceptional chemical and biological stability of cyclotides, makes them interesting in particular for their potential as pharmacological tools and possibly as leads to antitumor agents.
  •  
26.
  • List, Thomas, et al. (författare)
  • A chemically defined trifunctional antibody-cytokine-drug conjugate with potent antitumor activity
  • 2014
  • Ingår i: Molecular Cancer Therapeutics. - : American Association for Cancer Research. - 1535-7163 .- 1538-8514. ; 13:11, s. 2641-2652
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of immunostimulatory agents with cytotoxic drugs is emerging as a promising approach for potentially curative tumor therapy, but advances in this field are hindered by the requirement of testing individual combination partners as single agents in dedicated clinical studies, often with suboptimal efficacy. Here, we describe for the first time a novel multipayload class of targeted drugs, the immunocytokine-drug conjugates (IDC), which combine a tumor-homing antibody, a cytotoxic drug, and a proinflammatory cytokine in the same molecular entity. In particular, the IL2 cytokine and the disulfide-linked maytansinoid DM1 microtubular inhibitor could be coupled to the F8 antibody, directed against the alternatively spliced EDA domain of fibronectin, in a site-specific manner, yielding a chemically defined product with selective tumor-homing performance and potent anticancer activity in vivo, as tested in two different immunocompetent mouse models.
  •  
27.
  • Lövborg, Henrik, et al. (författare)
  • Multiparametric evaluation of apoptosis : effects of standard cytotoxic agents and the cyanoguanidine CHS 828
  • 2004
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 3:5, s. 521-526
  • Tidskriftsartikel (refereegranskat)abstract
    • A multiparametric high-content screening assay for measurement of apoptosis was developed. HeLa cells and lymphoma U-937 cells were exposed to cytotoxic drugs in flat-bottomed optical microtiter plates. After incubation, the DNA-binding dye Hoechst 33342, fluorescein-tagged probes that covalently bind active caspases and chloromethyl-X-rosamine to detect mitochondrial membrane potential (MMP) were added. Image acquisition and quantitative measurement of fluorescence in a defined number of cells per well was performed using the automated image capture and analysis instrument ArrayScan. The usefulness of the assay was tested in cells exposed to standard cytotoxic drugs as well as in experimental cytotoxic cyanoguanidine CHS 828. A time- and dose-dependent activation of caspase-3, decrease in MMP, and increase in nuclear fragmentation and condensation were observed for the standard drugs, with the ability to correlate the parameters on a single cell basis. CHS 828 induced caspase-3 activation and reduction in MMP with modest changes in nuclear morphology. The method described was considered to be a rapid and information-rich apoptosis assay suitable both for correlating morphological and biochemical apoptotic events in single cells as well as for screening and evaluation of novel substances with apoptosis-inducing capabilities.
  •  
28.
  •  
29.
  •  
30.
  • Mani, Katrin, et al. (författare)
  • HIV-Tat protein transduction domain specifically attenuates growth of polyamine deprived tumor cells.
  • 2007
  • Ingår i: Molecular Cancer Therapeutics. - 1538-8514. ; 6:2, s. 782-788
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyamines are essential for tumor cell growth, and the polyamine pathway represents an attractive target for cancer treatment. Several polyamine transport proteins have been cloned and characterized in bacteria and yeast cells; however, the mechanism of polyamine entry into mammalian cells remains poorly defined, although a role for proteoglycans has been suggested. Here, we show that the HIV-Tat transduction peptide, which is known to enter cells via a proteoglycan-dependent pathway, efficiently inhibits polyamine uptake. Polyamine uptake–deficient mutant cells with intact proteoglycan biosynthesis (CHO MGBG) displayed unperturbed HIV-Tat uptake activity compared with wild-type cells, supporting the notion that HIV-Tat peptide interferes with polyamine uptake via competition for proteoglycan binding sites rather than a putative downstream transporter. HIV-Tat specifically inhibited growth of human carcinoma cells made dependent on extracellular polyamines by treatment with the polyamine biosynthesis inhibitor {alpha}-difluoromethylornithine; accordingly, the Tat peptide prevented intracellular accumulation of exogenous polyamines. Moreover, combined treatment with {alpha}-difluoromethylornithine and HIV-Tat efficiently blocked tumor growth in an experimental mouse model. We conclude that HIV-Tat transduction domain and polyamines enter cells through a common pathway, which can be used to target polyamine-dependent tumor growth in the treatment of cancer.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  • Nelson, Michelle H., et al. (författare)
  • The Bispecific Tumor Antigen-Conditional 4-1BB x 5T4 Agonist, ALG.APV-527, Mediates Strong T-Cell Activation and Potent Antitumor Activity in Preclinical Studies
  • 2023
  • Ingår i: Molecular Cancer Therapeutics. - 1538-8514. ; 22:1, s. 89-101
  • Tidskriftsartikel (refereegranskat)abstract
    • 4-1BB (CD137) is an activation-induced costimulatory receptor that regulates immune responses of activated CD8 T and natural killer cells, by enhancing proliferation, survival, cytolytic activity, and IFNγ production. The ability to induce potent antitumor activity by stimulating 4-1BB on tumor-specific cytotoxic T cells makes 4-1BB an attractive target for designing novel immuno-oncology therapeutics. To minimize systemic immune toxicities and enhance activity at the tumor site, we have developed a novel bispecific antibody that stimulates 4-1BB function when co-engaged with the tumor-associated antigen 5T4. ALG.APV-527 was built on the basis of the ADAPTIR bispecific platform with optimized binding domains to 4-1BB and 5T4 originating from the ALLIGATOR-GOLD human single-chain variable fragment library. The epitope of ALG.APV-527 was determined to be located at domain 1 and 2 on 4-1BB using X-ray crystallography. As shown in reporter and primary cell assays in vitro, ALG.APV-527 triggers dose-dependent 4-1BB activity mediated only by 5T4 crosslinking. In vivo, ALG.APV-527 demonstrates robust antitumor responses, by inhibiting growth of established tumors expressing human 5T4 followed by a long-lasting memory immune response. ALG.APV-527 has an antibody-like half-life in cynomolgus macaques and was well tolerated at 50.5 mg/kg. ALG.APV-527 is uniquely designed for 5T4-conditional 4-1BB-mediated antitumor activity with potential to minimize systemic immune activation and hepatotoxicity while providing efficacious tumor-specific responses in a range of 5T4-expressing tumor indications as shown by robust activity in preclinical in vitro and in vivo models. On the basis of the combined preclinical dataset, ALG.APV-527 has potential as a promising anticancer therapeutic for the treatment of 5T4-expressing tumors.
  •  
35.
  •  
36.
  • Olsson, Olof, et al. (författare)
  • The Tyrosine Kinase Inhibitor Imatinib Augments Extracellular Fluid Exchange and Reduces Average Collagen Fibril Diameter in Experimental Carcinoma
  • 2016
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 15:10, s. 2455-2464
  • Tidskriftsartikel (refereegranskat)abstract
    • A typical obstacle to cancer therapy is the limited distribution of low molecular weight anticancer drugs within the carcinoma tissue. In experimental carcinoma, imatinib (STI571) increases efficacy of synchronized chemotherapy, reduces tumor interstitial fluid pressure, and increases interstitial fluid volume. STI571 also increases the water-perfusable fraction in metastases from human colorectal adenocarcinomas. Because the mechanism(s) behind these effects have not been fully elucidated, we investigated the hypothesis that STI571 alters specific properties of the stromal extracellular matrix. We analyzed STI571-treated human colorectal KAT-4/HT-29 experimental carcinomas, known to have a well-developed stromal compartment, for solute exchange and glycosaminoglycan content, as well as collagen content, structure, and synthesis. MRI of STI571-treated KAT-4/HT-29 experimental carcinomas showed a significantly increased efficacy in dynamic exchanges of solutes between tumor interstitium and blood. This effect was paralleled by a distinct change of the stromal collagen network architecture, manifested by a decreased average collagen fibril diameter, and increased collagen turnover. The glycosaminoglycan content was unchanged. Furthermore, the apparent effects on the stromal cellular composition were limited to a reduction in an NG2-positive stromal cell population. The current data support the hypothesis that the collagen network architecture influences the dynamic exchanges of solutes between blood and carcinoma tissue. It is conceivable that STI571 reprograms distinct nonvascular stromal cells to produce a looser extracellular matrix, ultimately improving transport characteristics for traditional chemotherapeutic agents.
  •  
37.
  • Pettersson, Helen, et al. (författare)
  • Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells.
  • 2009
  • Ingår i: Molecular Cancer Therapeutics. - 1538-8514 .- 1535-7163. ; 8:1, s. 160-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Small cell lung carcinoma (SCLC) is an extremely aggressive form of cancer and current treatment protocols are insufficient. SCLC have neuroendocrine characteristics and show phenotypical similarities to the childhood tumor neuroblastoma. As multidrug-resistant neuroblastoma cells are highly sensitive to arsenic trioxide (As2O3) in vitro and in vivo, we here studied the cytotoxic effects of As2O3 on SCLC cells. As2O3 induced pronounced cell death in SCLC cells at clinically relevant concentrations, and also at hypoxia. SCLC cells were more sensitive than non-SCLC cells to As2O3. Cell death was mainly due to necrosis, although apoptotic responses were also seen. A significant in vivo effect of As2O3 on SCLC growth was shown in a nude mice-xenograft model, although a fraction of the treated tumor-bearing animals did not respond. The nonresponding SCLC tumors differed in morphology and cell organization compared with treatment-responsive tumors, which in turn, showed decreased vascularization and higher expression of neuroendocrine markers compared with control tumors. Our results suggest a potential clinical application of As2O3 in SCLC therapy. In addition to cell death induction, antiangiogenic induction of differentiation may also be part of the in vivo effect of As2O3 on SCLC growth, as suggested by an increase in neuroendocrine markers in cultured cells.
  •  
38.
  • Polischouk, Anya G., et al. (författare)
  • The antipsychotic drug trifluoperazine inhibits DNA repair and sensitizes non-small cell lung carcinoma cells to DNA double-strand break-induced cell death
  • 2007
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 6:8, s. 2303-2309
  • Tidskriftsartikel (refereegranskat)abstract
    • Trifluoperazine (TFP), a member of the phenothiazine class of antipsychotic drugs, has been shown to augment the cytotoxicity of the DNA-damaging agent bleomycin. In the present study, we investigated the effect of trifluoperazine on (a) survival of bleomycin-treated human non-small cell lung carcinoma U1810 cells, (b) induction and repair of bleomycin-induced DNA strand breaks, and (c) nonhomologous end-joining (NHEJ), the major DNA double-strand break (DSB) repair pathway in mammalian cells. By using a clonogenic survival assay, we show here that concomitant administration of trifluoperazine at a subtoxic concentration enhances the cytotoxicity of bleomycin. Moreover, trifluoperazine also increases the longevity of bleomycin-induced DNA strand breaks in U1810 cells, as shown by both comet assay and fraction of activity released (FAR)-assay. This action seems to be related to suppression of cellular DNA DSB repair activities because NHEJ-mediated rejoining of DSBs occurs with significantly lower efficiency in the presence of trifluoperazine. We propose that TFP might be capable of inhibiting one or more elements of the DNA DSB repair machinery, thereby increasing the cytotoxicity of bleomycin in lung cancer cells.
  •  
39.
  • Roche, Francis P., et al. (författare)
  • Leukocyte differentiation by histidine-rich glycoprotein/stanniocalcin-2 complex regulates murine glioma growth through modulation of anti-tumor immunity
  • 2018
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 17:9, s. 1961-1972
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma-protein histidine-rich glycoprotein (HRG) is implicated in phenotypic switching of tumor-associated macrophages, regulating cytokine production and phagocytotic activity, thereby promoting vessel normalization and anti-tumor immune responses. To assess the therapeutic effect of HRG gene delivery on CNS tumors, we used adenovirus-encoded HRG to treat mouse intracranial GL261 glioma. Delivery of Ad5-HRG to the tumor site resulted in a significant reduction in glioma growth, associated with increased vessel perfusion and increased CD45+ leukocyte and CD8+ T cell accumulation in the tumor. Antibody-mediated neutralization of colony-stimulating factor-1 suppressed the effects of HRG on CD45+ and CD8+ infiltration. Using a novel protein interaction-decoding technology, TRICEPS-based ligand receptor capture (LRC), we identified Stanniocalcin-2 (STC2) as an interacting partner of HRG on the surface of inflammatory cells in vitro and co-localization of HRG and STC2 in gliomas. HRG reduced the suppressive effects of STC2 on monocyte CD14+ differentiation and STC2-regulated immune response pathways. In consequence, Ad5-HRG treated gliomas displayed decreased numbers of Interleukin-35+ Treg cells, providing a mechanistic rationale for the reduction in GL261 growth in response to Ad5-HRG delivery. We conclude that HRG suppresses glioma growth by modulating tumor inflammation through monocyte infiltration and differentiation. Moreover, HRG acts to balance the regulatory effects of its partner, STC2, on inflammation and innate and/or acquired immunity. HRG gene delivery therefore offers a potential therapeutic strategy to control anti-tumor immunity.
  •  
40.
  •  
41.
  •  
42.
  • Senkowski, Wojciech, et al. (författare)
  • Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer
  • 2015
  • Ingår i: Molecular Cancer Therapeutics. - : American Association for Cancer Research. - 1535-7163 .- 1538-8514. ; 14:6, s. 1504-1516
  • Tidskriftsartikel (refereegranskat)abstract
    • Because dormant cancer cells in hypoxic and nutrient-deprived regions of solid tumors provide a major obstacle to treatment, compounds targeting those cells might have clinical benefits. Here, we describe a high-throughput drug screening approach, using glucose-deprived multicellular tumor spheroids (MCTS) with inner hypoxia, to identify compounds that specifically target this cell population. We used a concept of drug repositioning-using known molecules for new indications. This is a promising strategy to identify molecules for rapid clinical advancement. By screening 1,600 compounds with documented clinical history, we aimed to identify candidates with unforeseen potential for repositioning as anticancer drugs. Our screen identified five molecules with pronounced MCTS-selective activity: nitazoxanide, niclosamide, closantel, pyrvinium pamoate, and salinomycin. Herein, we show that all five compounds inhibit mitochondrial respiration. This suggests that cancer cells in low glucose concentrations depend on oxidative phosphorylation rather than solely glycolysis. Importantly, continuous exposure to the compounds was required to achieve effective treatment. Nitazoxanide, an FDA-approved antiprotozoal drug with excellent pharmacokinetic and safety profile, is the only molecule among the screening hits that reaches high plasma concentrations persisting for up to a few hours after single oral dose. Nitazoxanide activated the AMPK pathway and downregulated c-Myc, mTOR, and Wnt signaling at clinically achievable concentrations. Nitazoxanide combined with the cytotoxic drug irinotecan showed anticancer activity in vivo. We here report that the FDA-approved anthelmintic drug nitazoxanide could be a potential candidate for advancement into cancer clinical trials. (C) 2015 AACR.
  •  
43.
  • Spyrou, Argyris, et al. (författare)
  • Inhibition of Heparanase in Pediatric Brain Tumor Cells Attenuates their Proliferation, Invasive Capacity, and In Vivo Tumor Growth
  • 2017
  • Ingår i: Molecular Cancer Therapeutics. - : AMER ASSOC CANCER RESEARCH. - 1535-7163 .- 1538-8514. ; 16:8, s. 1705-1716
  • Tidskriftsartikel (refereegranskat)abstract
    • Curative therapy for medulloblastoma and other pediatric embryonal brain tumors has improved, but the outcome still remains poor and current treatment causes long-term complications. Malignant brain tumors infiltrate the healthy brain tissue and, thus despite resection, cells that have already migrated cause rapid tumor regrowth. Heparan sulfate proteoglycans (HSPG), major components of the extracellular matrix (ECM), modulate the activities of a variety of proteins. The major enzyme that degrades HS, heparanase (HPSE), is an important regulator of the ECM. Here, we report that the levels of HPSE in pediatric brain tumors are higher than in healthy brain tissue and that treatment of pediatric brain tumor cells with HPSE stimulated their growth. In addition, the latent, 65 kDa form of HPSE (that requires intracellular enzymatic processing for activation) enhanced cell viability and rapidly activated the ERK and AKT signaling pathways, before enzymatically active HPSE was detected. The HPSE inhibitor PG545 efficiently killed pediatric brain tumor cells, but not normal human astrocytes, and this compound also reduced tumor cell invasion in vitro and potently reduced the size of flank tumors in vivo. Our findings indicate that HPSE in malignant brain tumors affects both the tumor cells themselves and their ECM. In conclusion, HPSE plays a substantial role in childhood brain tumors, by contributing to tumor aggressiveness and thereby represents a potential therapeutic target.
  •  
44.
  • Trovato, Francesco, et al. (författare)
  • Transcription Factor-Forced Astrocytic Differentiation Impairs Human Glioblastoma Growth In Vitro and In Vivo
  • 2023
  • Ingår i: Molecular Cancer Therapeutics. - 1538-8514. ; 22:2, s. 274-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct cellular reprogramming has recently gained attention of cancer researchers for the possibility to convert undifferentiated cancer cells into more differentiated, postmitotic cell types. While a few studies have attempted reprogramming of glioblastoma (GBM) cells toward a neuronal fate, this approach has not yet been used to induce differentiation into other lineages and in vivo data on reduction in tumorigenicity are limited. Here, we employ cellular reprogramming to induce astrocytic differentiation as a therapeutic approach in GBM. To this end, we overexpressed key transcriptional regulators of astroglial development in human GBM and GBM stem cell lines. Treated cells undergo a remarkable shift in structure, acquiring an astrocyte-like morphology with star-shaped bodies and radial branched processes. Differentiated cells express typical glial markers and show a marked decrease in their proliferative state. In addition, forced differentiation induces astrocytic functions such as induced calcium transients and ability to respond to inflammatory stimuli. Most importantly, forced differentiation substantially reduces tumorigenicity of GBM cells in an in vivo xenotransplantation model. The current study capitalizes on cellular plasticity with a novel application in cancer. We take advantage of the similarity between neural developmental processes and cancer hierarchy to mitigate, if not completely abolish, the malignant nature of tumor cells and pave the way for new intervention strategies.
  •  
45.
  •  
46.
  • Wickström, Malin, et al. (författare)
  • The novel melphalan prodrug J1 inhibits neuroblastoma growth in vitro and in vivo
  • 2007
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 6:9, s. 2409-2417
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is the most common extracranial solid tumor of childhood. The activity of J1 (l-melphalanyl-p-l-fluorophenylalanine ethyl ester), an enzymatically activated melphalan prodrug, was evaluated in neuroblastoma models in vitro and in vivo. Seven neuroblastoma cell lines with various levels of drug resistance were screened for cytotoxicity of J1 alone or in combination with standard cytotoxic drugs, using a fluorometric cytotoxicity assay. J1 displayed high cytotoxic activity in vitro against all neuroblastoma cell lines, with IC50 values in the submicromolar range, significantly more potent than melphalan. The cytotoxicity of J1, but not melphalan, could be significantly inhibited by the aminopeptidase inhibitor bestatin. J1 induced caspase-3 cleavage and apoptotic morphology, had additive effects in combination with doxorubicin, cyclophosphamide, carboplatin, and vincristine, and synergistically killed otherwise drug-resistant cells when combined with etoposide. Athymic rats and mice carrying neuroblastoma xenografts [SH-SY5Y, SK-N-BE(2)] were treated with equimolar doses of melphalan, J1, or no drug, and effects on tumor growth and tissue morphology were analyzed. Tumor growth in vivo was significantly inhibited by J1 compared with untreated controls. Compared with melphalan, J1 more effectively inhibited the growth of mice with SH-SY5Y xenografts, was associated with higher caspase-3 activation, fewer proliferating tumor cells, and significantly decreased mean vascular density. In conclusion, the melphalan prodrug J1 is highly active in models of neuroblastoma in vitro and in vivo, encouraging further clinical development in this patient group.
  •  
47.
  • Wilsker, Deborah, et al. (författare)
  • Targeted Mutations in the ATR Pathway Define Agent-Specific Requirements for Cancer Cell Growth and Survival
  • 2012
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 11:1, s. 98-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Many anticancer agents induce DNA strand breaks or cause the accumulation of DNA replication intermediates. The protein encoded by ataxia-telangiectasia mutated and Rad 3-related (ATR) generates signals in response to these altered DNA structures and activates cellular survival responses. Accordingly, ATR has drawn increased attention as a potential target for novel therapeutic strategies designed to potentiate the effects of existing drugs. In this study, we use a unique panel of genetically modified human cancer cells to unambiguously test the roles of upstream and downstream components of the ATR pathway in the responses to common therapeutic agents. Upstream, the S-phase-specific cyclin-dependent kinase (Cdk) 2 was required for robust activation of ATR in response to diverse chemotherapeutic agents. While Cdk2-mediated ATR activation promoted cell survival after treatment with many drugs, signaling from ATR directly to the checkpoint kinase Chk1 was required for survival responses to only a subset of the drugs tested. These results show that specifically inhibiting the Cdk2/ATR/Chk1 pathway via distinct regulators can differentially sensitize cancer cells to a wide range of therapeutic agents.
  •  
48.
  • Wood, Matthew, et al. (författare)
  • Discovery of a small molecule targeting IRA2 deletion in budding yeast and neurofibromin loss in malignant peripheral nerve sheath tumor cells
  • 2011
  • Ingår i: Molecular Cancer Therapeutics. - : American Association for Cancer Research. - 1535-7163 .- 1538-8514. ; 10:9, s. 1740-1750
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant peripheral nerve sheath tumor (MPNST) is a life-threatening complication of neurofibromatosis type 1 (NF1). NF1 is caused by mutation in the gene encoding neurofibromin, a negative regulator of Ras signaling. There are no effective pharmacologic therapies for MPNST. To identify new therapeutic approaches targeting this dangerous malignancy, we developed assays in NF1(+/+) and NF1(-/-) MPNST cell lines and in budding yeast lacking the NF1 homologue IRA2 (ira2Δ). Here, we describe UC1, a small molecule that targets NF1(-/-) cell lines and ira2Δ budding yeast. By using yeast genetics, we identified NAB3 as a high-copy suppressor of UC1 sensitivity. NAB3 encodes an RNA binding protein that associates with the C-terminal domain of RNA Pol II and plays a role in the termination of nonpolyadenylated RNA transcripts. Strains with deletion of IRA2 are sensitive to genetic inactivation of NAB3, suggesting an interaction between Ras signaling and Nab3-dependent transcript termination. This work identifies a lead compound and a possible target pathway for NF1-associated MPNST, and shows a novel model system approach to identify and validate target pathways for cancer cells in which NF1 loss drives tumor formation.
  •  
49.
  • Wu, Xuping, et al. (författare)
  • Alternative Cytotoxic Effects of the Postulated IGF-IR Inhibitor Picropodophyllin In Vitro
  • 2013
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 12:8, s. 1526-1536
  • Tidskriftsartikel (refereegranskat)abstract
    • The insulin-like growth factor-1 (IGF-I) and its receptors play an important role in transformation and progression of several malignancies. Inhibitors of this pathway have been developed and evaluated but generally performed poorly in clinical trials, and several drug candidates have been abandoned. The cyclolignan picropodophyllin (PPP) has been described as a potent and selective IGF-IR inhibitor and is currently undergoing clinical trials. We investigated PPP's activity in panels of human cancer cell lines (e.g., esophageal squamous carcinoma cell lines) but found no effects on the phosphorylation or expression of IGF-IR. Nor was the cytotoxic activity of PPP related to the presence or spontaneous phosphorylation of IGF-IR. However, its activity correlated with that of known tubulin inhibitors, and it destabilized microtubule assembly at cytotoxic concentrations also achievable in patients. PPP is a stereoisomer of podophyllotoxin (PPT), a potent tubulin inhibitor, and an equilibrium between the two has previously been described. PPP could thus potentially act as a reservoir for the continuous generation of low doses of PPT. Interestingly, PPP also inhibited downstream signaling from tyrosine kinase receptors, including the serine/threonine kinase Akt. This effect is associated with microtubule-related downregulation of the EGF receptor, rather than the IGF-IR. These results suggest that the cytotoxicity and pAkt inhibition observed following treatment with the cyclolignan PPP in vitro result from microtubule inhibition (directly or indirectly by spontaneous PPT formation), rather than any effect on IGF-IR. It is also suggested that PPT should be used as a reference compound in all future studies on PPP.
  •  
50.
  • Wu, X. P., et al. (författare)
  • Alternative Cytotoxic Effects of the Postulated IGF-IR Inhibitor Picropodophyllin In Vitro
  • 2013
  • Ingår i: Molecular Cancer Therapeutics. - : American Association for Cancer Research (AACR). - 1535-7163 .- 1538-8514. ; 12:8, s. 1526-1536
  • Tidskriftsartikel (refereegranskat)abstract
    • The insulin-like growth factor-1 (IGF-I) and its receptors play an important role in transformation and progression of several malignancies. Inhibitors of this pathway have been developed and evaluated but generally performed poorly in clinical trials, and several drug candidates have been abandoned. The cyclolignan picropodophyllin (PPP) has been described as a potent and selective IGF-IR inhibitor and is currently undergoing clinical trials. We investigated PPP's activity in panels of human cancer cell lines (e. g., esophageal squamous carcinoma cell lines) but found no effects on the phosphorylation or expression of IGF-IR. Nor was the cytotoxic activity of PPP related to the presence or spontaneous phosphorylation of IGF-IR. However, its activity correlated with that of known tubulin inhibitors, and it destabilized microtubule assembly at cytotoxic concentrations also achievable in patients. PPP is a stereoisomer of podophyllotoxin (PPT), a potent tubulin inhibitor, and an equilibrium between the two has previously been described. PPPcould thus potentially act as a reservoir for the continuous generation of low doses of PPT. Interestingly, PPP also inhibited downstream signaling from tyrosine kinase receptors, including the serine/threonine kinase Akt. This effect is associated with microtubule-related downregulation of the EGF receptor, rather than the IGF-IR. These results suggest that the cytotoxicity and pAkt inhibition observed following treatment with the cyclolignan PPP in vitro result from microtubule inhibition (directly or indirectly by spontaneous PPT formation), rather than any effect on IGF-IR. It is also suggested that PPT should be used as a reference compound in all future studies on PPP. (C)2013 AACR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 55

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy