SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adameyko I.) "

Sökning: WFRF:(Adameyko I.)

  • Resultat 1-50 av 90
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Adameyko, I, et al. (författare)
  • Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest
  • 2012
  • Ingår i: Development (Cambridge, England). - : The Company of Biologists. - 1477-9129 .- 0950-1991. ; 139:2, s. 397-410
  • Tidskriftsartikel (refereegranskat)abstract
    • The cellular origin and molecular mechanisms regulating pigmentation of head and neck are largely unknown. Melanocyte specification is controlled by the transcriptional activity of Mitf, but no general logic has emerged to explain how Mitf and progenitor transcriptional activities consolidate melanocyte and progenitor cell fates. We show that cranial melanocytes arise from at least two different cellular sources: initially from nerve-associated Schwann cell precursors (SCPs) and later from a cellular source that is independent of nerves. Unlike the midbrain-hindbrain cluster from which melanoblasts arise independently of nerves, a large center of melanocytes in and around cranial nerves IX-X is derived from SCPs, as shown by genetic cell-lineage tracing and analysis of ErbB3-null mutant mice. Conditional gain- and loss-of-function experiments show genetically that cell fates in the neural crest involve both the SRY transcription factor Sox2 and Mitf, which consolidate an SCP progenitor or melanocyte fate by cross-regulatory interactions. A gradual downregulation of Sox2 in progenitors during development permits the differentiation of both neural crest- and SCP-derived progenitors into melanocytes, and an initial small pool of nerve-associated melanoblasts expands in number and disperses under the control of endothelin receptor B (Ednrb) and Wnt5a signaling.
  •  
3.
  • Kameneva, P, et al. (författare)
  • Serotonin limits generation of chromaffin cells during adrenal organ development
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 2901-
  • Tidskriftsartikel (refereegranskat)abstract
    • Adrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor “bridge” cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3Ahigh human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists. In embryos (in vivo), the physiological increase of 5HT caused a prolongation of the cell cycle in “bridge” progenitors leading to a smaller chromaffin population and changing the balance of hormones and behavioral patterns in adulthood. These behavioral effects and smaller adrenals were mirrored in the progeny of pregnant female mice subjected to experimental stress, suggesting a maternal-fetal link that controls developmental adaptations. Finally, these results corresponded to a size-distribution of adrenals found in wild rodents with different coping strategies.
  •  
4.
  • Kaucka, M, et al. (författare)
  • Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges
  • 2021
  • Ingår i: Cellular and molecular life sciences : CMLS. - : Springer Science and Business Media LLC. - 1420-9071 .- 1420-682X. ; 78:16, s. 6033-6049
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.
  •  
5.
  •  
6.
  •  
7.
  • Petitpre, C, et al. (författare)
  • Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 3878-
  • Tidskriftsartikel (refereegranskat)abstract
    • Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.
  •  
8.
  • Sriha, J, et al. (författare)
  • BET and CDK Inhibition Reveal Differences in the Proliferation Control of Sympathetic Ganglion Neuroblasts and Adrenal Chromaffin Cells
  • 2022
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 14:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma arising from the adrenal differ from ganglionic neuroblastoma both genetically and clinically, with adrenal tumors being associated with a more severe prognosis. The different tumor properties may be linked to specific tumor founder cells in adrenal and sympathetic ganglia. To address this question, we first set up cultures of mouse sympathetic neuroblasts and adrenal chromaffin cells. These cultures were then treated with various proliferation inhibitors to identify lineage-specific responses. We show that neuroblast and chromaffin cell proliferation was affected by WNT, ALK, IGF1, and PRC2/EZH2 signaling inhibitors to a similar extent. However, differential effects were observed in response to bromodomain and extraterminal (BET) protein inhibitors (JQ1, GSK1324726A) and to the CDK-7 inhibitor THZ1, with BET inhibitors preferentially affecting chromaffin cells, and THZ1 preferentially affecting neuroblasts. The differential dependence of chromaffin cells and neuroblasts on BET and CDK signaling may indicate different mechanisms during tumor initiation in sympathetic ganglia and adrenal.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Adameyko, I (författare)
  • Neural circuitry gets rewired
  • 2016
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 354:6314, s. 833-834
  • Tidskriftsartikel (refereegranskat)abstract
    • Former parasympathetic innervations of organs are now claimed sympathetic
  •  
17.
  • Adameyko, I (författare)
  • Supracellular contractions propel migration
  • 2018
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 362:6412, s. 290-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytoskeletal cords connecting cells at the back of cell groups enable directional migration
  •  
18.
  •  
19.
  • Akkuratova, N, et al. (författare)
  • Developmental heterogeneity of embryonic neuroendocrine chromaffin cells and their maturation dynamics
  • 2022
  • Ingår i: Frontiers in endocrinology. - : Frontiers Media SA. - 1664-2392. ; 13, s. 1020000-
  • Tidskriftsartikel (refereegranskat)abstract
    • During embryonic development, nerve-associated Schwann cell precursors (SCPs) give rise to chromaffin cells of the adrenal gland via the “bridge” transient stage, according to recent functional experiments and single cell data from humans and mice. However, currently existing data do not resolve the finest heterogeneity of developing chromaffin populations. Here we took advantage of deep SmartSeq2 transcriptomic sequencing to expand our collection of individual cells from the developing murine sympatho-adrenal anlage and uncover the microheterogeneity of embryonic chromaffin cells and their corresponding developmental paths. We discovered that SCPs on the splachnic nerve show a high degree of microheterogeneity corresponding to early biases towards either Schwann or chromaffin terminal fates. Furthermore, we found that a post-”bridge” population of developing chromaffin cells gives rise to persisting oxygen-sensing chromaffin cells and the two terminal populations (adrenergic and noradrenergic) via diverging differentiation paths. Taken together, we provide a thorough identification of novel markers of adrenergic and noradrenergic populations in developing adrenal glands and report novel differentiation paths leading to them.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Bedoya-Reina, O. C., et al. (författare)
  • Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Childhood neuroblastoma has a remarkable variability in outcome. Age at diagnosis is one of the most important prognostic factors, with children less than 1 year old having favorable outcomes. Here we study single-cell and single-nuclei transcriptomes of neuroblastoma with different clinical risk groups and stages, including healthy adrenal gland. We compare tumor cell populations with embryonic mouse sympatho-adrenal derivatives, and post-natal human adrenal gland. We provide evidence that low and high-risk neuroblastoma have different cell identities, representing two disease entities. Low-risk neuroblastoma presents a transcriptome that resembles sympatho- and chromaffin cells, whereas malignant cells enriched in high-risk neuroblastoma resembles a subtype of TRKB+ cholinergic progenitor population identified in human post-natal gland. Analyses of these populations reveal different gene expression programs for worst and better survival in correlation with age at diagnosis. Our findings reveal two cellular identities and a composition of human neuroblastoma tumors reflecting clinical heterogeneity and outcome. Childhood neuroblastoma can be separated into high and low risk groups, with prognosis depending on age at diagnosis. Here, the authors show that low and high risk neuroblastoma tumours are composed of different cell types with different malignancy potential.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Faure, L, et al. (författare)
  • Single cell RNA sequencing identifies early diversity of sensory neurons forming via bi-potential intermediates
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4175-
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatic sensation is defined by the existence of a diversity of primary sensory neurons with unique biological features and response profiles to external and internal stimuli. However, there is no coherent picture about how this diversity of cell states is transcriptionally generated. Here, we use deep single cell analysis to resolve fate splits and molecular biasing processes during sensory neurogenesis in mice. Our results identify a complex series of successive and specific transcriptional changes in post-mitotic neurons that delineate hierarchical regulatory states leading to the generation of the main sensory neuron classes. In addition, our analysis identifies previously undetected early gene modules expressed long before fate determination although being clearly associated with defined sensory subtypes. Overall, the early diversity of sensory neurons is generated through successive bi-potential intermediates in which synchronization of relevant gene modules and concurrent repression of competing fate programs precede cell fate stabilization and final commitment.
  •  
28.
  • Floriddia, E, et al. (författare)
  • In conversation with Igor Adameyko
  • 2024
  • Ingår i: Nature neuroscience. - 1546-1726. ; 27:4, s. 601-605
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  • Hu, YZ, et al. (författare)
  • Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages
  • 2022
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:23, s. eabm6340-
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA–sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network–based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains’ vasculature, and patients with such glioblastoma have a significantly poorer outcome.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  • Kameneva, P, et al. (författare)
  • Neuronal lineages derived from the nerve-associated Schwann cell precursors
  • 2021
  • Ingår i: Cellular and molecular life sciences : CMLS. - : Springer Science and Business Media LLC. - 1420-9071 .- 1420-682X. ; 78:2, s. 513-529
  • Tidskriftsartikel (refereegranskat)abstract
    • For a long time, neurogenic placodes and migratory neural crest cells were considered the immediate sources building neurons of peripheral nervous system. Recently, a number of discoveries revealed the existence of another progenitor type—a nerve-associated multipotent Schwann cell precursors (SCPs) building enteric and parasympathetic neurons as well as neuroendocrine chromaffin cells. SCPs are neural crest-derived and are similar to the crest cells by their markers and differentiation potential. Such similarities, but also considerable differences, raise many questions pertaining to the medical side, fundamental developmental biology and evolution. Here, we discuss the genesis of Schwann cell precursors, their role in building peripheral neural structures and ponder on their role in the origin in congenial diseases associated with peripheral nervous systems.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  • Kaucka, M., et al. (författare)
  • Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates. Normal limb development relies on synchronized formation of cartilage and bone. Here, the authors show that in salamander limb regeneration these processes are decoupled: ossification occurs after the final size of regenerating cartilage is reached, allowing fast regeneration and leading to bulky bones.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 90

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy