SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Archer KR) "

Sökning: WFRF:(Archer KR)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Archer, A, et al. (författare)
  • Skeletal muscle as a target of LXR agonist after long-term treatment: focus on lipid homeostasis
  • 2014
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 306:5, s. E494-E502
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver X receptors (LXR)α and LXRβ are transcription factors belonging to the nuclear receptor family, which play a central role in metabolic homeostasis, being master regulators of key target genes in the glucose and lipid pathways. Wild-type (WT), LXRα−/−, and LXRβ−/−mice were fed a chow diet with (treated) or without (control) the synthetic dual LXR agonist GW3965 for 5 wk. GW3965 raised intrahepatic triglyceride (TG) level but, surprisingly, reduced serum TG level through the activation of serum lipase activity. The serum TG reduction was associated with a repression of both catecholamine-stimulated lipolysis and relative glucose incorporation into lipid in isolated adipocytes through activation of LXRβ. We also demonstrated that LXRα is required for basal (nonstimulated) adipocyte metabolism, whereas LXRβ acts as a repressor of lipolysis. On the contrary, in skeletal muscle (SM), the lipogenic and cholesterol transporter LXR target genes were markedly induced in WT and LXRα−/−mice and to a lesser extent in LXRβ−/−mice following treatment with GW3965. Moreover, TG content was reduced in SM of LXRβ−/−mice, associated with increased expression of the main TG-lipase genes Hsl and Atgl. Energy expenditure was increased, and a switch from glucose to lipid oxidation was observed. In conclusion, we provide evidence that LXR might be an essential regulator of the lipid balance between tissues to ensure appropriate control of the flux of fuel. Importantly, we show that, after chronic treatment with GW3965, SM becomes the target tissue for LXR activation, as opposed to liver, in acute treatment.
  •  
4.
  • Korach-Andre, M, et al. (författare)
  • Liver X receptors regulate de novo lipogenesis in a tissue-specific manner in C57BL/6 female mice
  • 2011
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 301:1, s. E210-E222
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver X receptors (LXRs) play a key role in cholesterol and bile acid metabolism but are also important regulators of glucose metabolism. Recently, LXRs have been proposed as a glucose sensor affecting LXR-dependent gene expression. We challenged wild-type (WT) and LXRαβ−/−mice with a normal diet (ND) or a high-carbohydrate diet (HCD). Magnetic resonance imaging showed different fat distribution between WT and LXRαβ−/−mice. Surprisingly, gonadal (GL) adipocyte volume decreased on HCD compared with ND in WT mice, whereas it slightly increased in LXRαβ−/−mice. Interestingly, insulin-stimulated lipogenesis of isolated GL fat cells was reduced on HCD compared with ND in LXRαβ−/−mice, whereas no changes were observed in WT mice. Net de novo lipogenesis (DNL) calculated from V̇o2and V̇co2was significantly higher in LXRαβ−/−than in WT mice on HCD. Histology of HCD-fed livers showed hepatic steatosis in WT mice but not in LXRαβ−/−mice. Glucose tolerance was not different between groups, but insulin sensitivity was decreased by the HCD in WT but not in LXRαβ−/−mice. Finally, gene expression analysis of adipose tissue showed induced expression of genes involved in DNL in LXRαβ−/−mice compared with WT animals as opposed to the liver, where expression of DNL genes was repressed in LXRαβ−/−mice. We thus conclude that absence of LXRs stimulates DNL in adipose tissue, but suppresses DNL in the liver, demonstrating opposite roles of LXR in DNL regulation in these two tissues. These results show tissue-specific regulation of LXR activity, a crucial finding for drug development.
  •  
5.
  • Lundberg, M, et al. (författare)
  • Author Response to Bongers et al
  • 2019
  • Ingår i: Physical therapy. - : Oxford University Press (OUP). - 1538-6724 .- 0031-9023. ; 99:7, s. 955-955
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  •  
7.
  • Robinson, EL, et al. (författare)
  • MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy
  • 2022
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy.
  •  
8.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy