SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baczyk Marcin) "

Sökning: WFRF:(Baczyk Marcin)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baczyk, Marcin, et al. (författare)
  • Facilitation of ipsilateral actions of corticospinal tract neurons on feline motoneurons by transcranial direct current stimulation
  • 2014
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 0953-816X. ; 40:4, s. 2628-2640
  • Tidskriftsartikel (refereegranskat)abstract
    • Ipsilateral actions of pyramidal tract (PT) neurons are weak but may, if strengthened, compensate for deficient crossed PT actions following brain damage. The purpose of the present study was to examine whether transcranial direct current stimulation (tDCS) can strengthen ipsilateral PT (iPT) actions; in particular, those relayed by reticulospinal neurons co-excited by axon collaterals of fibres descending in the iPT and contralateral PT (coPT) and of reticulospinal neurons descending in the medial longitudinal fascicle (MLF). The effects of tDCS were assessed in acute experiments on deeply anaesthetized cats by comparing postsynaptic potentials evoked in hindlimb motoneurons and discharges recorded from their axons in a ventral root, before, during and after tDCS. tDCS was consistently found to facilitate joint actions of the iPT and coPT, especially when they were stimulated together with the MLF. Both excitatory postsynaptic potentials and inhibitory postsynaptic potentials evoked in motoneurons and the ensuing ventral root discharges were facilitated, even though the facilitatory effects of tDCS were not sufficient for activation of motoneurons by iPT neurons alone. Facilitation outlasted single tDCS periods by at least a few minutes, and the effects evoked by repeated tDCS by up to 2 h. The results of this study thus indicate that tDCS may increase the contribution of iPT actions to the recovery of motor functions after injuries to coPT neurons, and thereby assist rehabilitation, provided that corticoreticular and reticulospinal connections are preserved.
  •  
2.
  • Baczyk, Marcin, et al. (författare)
  • Long-term effects of direct current are reproduced by intermittent depolarization of myelinated nerve fibers
  • 2018
  • Ingår i: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 120:3, s. 1173-1185
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct current (DC) potently increases the excitability of myelinated afferent fibers in the dorsal columns, both during DC polarization of these fibers and during a considerable (>1 h) postpolarization period. The aim of the present study was to investigate whether similarly long-lasting changes in the excitability of myelinated nerve fibers in the dorsal columns may be evoked by field potentials following stimulation of peripheral afferents and by subthreshold epidurally applied current pulses. The experiments were performed in deeply anesthetized rats. The effects were monitored by changes in nerve volleys evoked in epidurally stimulated hindlimb afferents and in the synaptic actions of these afferents. Both were found to be facilitated during as well as following stimulation of a skin nerve and during as well as following epidurally applied current pulses of 5- to 10-ms duration. The facilitation occurring <= 2 min after skin nerve stimulation could be linked to both primary afferent depolarization and large dorsal horn field potentials, whereas the subsequent changes (up to 1 h) were attributable to effects of the field potentials. The findings lead to the conclusion that the modulation of spinal activity evoked by DC does not require long-lasting polarization and that relatively short current pulses and intrinsic field potentials may contribute to plasticity in spinal activity. These results suggest the possibility of enhancing the effects of epidural stimulation in human subjects by combining it with polarizing current pulses and peripheral afferent stimulation and not only with continuous DC. NEW & NOTEWORTHY The aim of this study was to define conditions under which a long-term. increase is evoked in the excitability of myelinated nerve fibers. The results demonstrate that a potent and long-lasting increase in the excitability of afferent fibers traversing the dorsal columns may be induced by synaptically evoked intrinsic field as well as by epidurally applied intermittent current pulses. They thus provide a new means for the facilitation of the effects of epidural stimulation.
  •  
3.
  • Baczyk, Marcin, et al. (författare)
  • Presynaptic actions of transcranial and local direct current stimulation in the red nucleus
  • 2014
  • Ingår i: Journal of Physiology. - : Wiley. - 0022-3751 .- 1469-7793. ; 592:Pt 19, s. 4313-28
  • Tidskriftsartikel (refereegranskat)abstract
    • The main aim of the present study was to examine to what extent long-lasting subcortical actions of transcranial direct current stimulation (tDCS) may be related to its presynaptic actions. This was investigated in the red nucleus, where tDCS was recently demonstrated to facilitate transmission between interpositorubral and rubrospinal neurons. Changes in the excitability of preterminal axonal branches of interpositorubral neurons close to rubrospinal neurons were investigated during and after tDCS (0.2 mA) applied over the sensorimotor cortical area in deeply anaesthetized rats and cats. As a measure of the excitability, we used the probability of antidromic activation of individual interpositorubral neurons by electrical stimuli applied in the red nucleus. Our second aim was to compare effects of weak (≤1 μA) direct current applied within the red nucleus with effects of tDCS to allow the use of local depolarization in a further analysis of mechanisms of tDCS instead of widespread and more difficult to control depolarization evoked by distant electrodes. Local cathodal polarization was found to replicate all effects of cathodal tDCS hitherto demonstrated in the rat, including long-lasting facilitation of trans-synaptically evoked descending volleys and trisynaptically evoked EMG responses in neck muscles. It also replicated all effects of anodal tDCS in the cat. In both species, it increased the excitability of preterminal axonal branches of interpositorubral neurons up to 1 h post-tDCS. Local anodal polarization evoked opposite effects. We thus show that presynaptic actions of polarizing direct current may contribute to both immediate and prolonged effects of tDCS. © 2014 The Physiological Society.
  •  
4.
  • Bolzoni, Francesco, et al. (författare)
  • Subcortical effects of transcranial direct current stimulation (tDCS) in the rat.
  • 2013
  • Ingår i: The Journal of physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 591:16, s. 4027-4042
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcranial direct current stimulation (tDCS) affects neurons at both cortical and subcortical levels. The subcortical effects involve several descending motor systems but appeared to be relatively weak, as only small increases in the amplitude of subcortically initiated descending volleys and a minute shortening of latencies of these volleys were found. The aim of the present study was therefore to evaluate the consequences of facilitation of these volleys on the ensuing muscle activation. The experiments were carried on deeply anaesthetized but not paralyzed rats. Effects of tDCS were tested on EMG potentials recorded from neck muscles evoked by weak (20-60 µA) single, double or triple stimuli applied in the medial longitudinal fascicle (MLF) or in the red nucleus (RN). Short latencies of these potentials were compatible with monosynaptic or disynaptic actions of reticulo-spinal and disynaptic or trisynaptic actions of rubro-spinal neurons on neck motoneurons. Despite only weak effects on indirect descending volleys, the EMG responses from both the MLF and the RN were potently facilitated by cathodal tDCS and depressed by anodal tDCS. Both the facilitation and the depression developed relatively rapidly (within the first minute) but both outlasted tDCS and were present for up to 1 hour after tDCS. The study thus demonstrates long-lasting effects of tDCS on subcortical neurons in the rat, albeit evoked by opposite polarity of tDCS than on subcortical neurons in the cat investigated in the preceding study, or on cortical neurons in the humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Jankowska, Elzbieta (4)
Baczyk, Marcin (4)
Pettersson, Lars-Gun ... (1)
Bolzoni, Francesco (1)
Lärosäte
Göteborgs universitet (4)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy