SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baird Emily) "

Sökning: WFRF:(Baird Emily)

  • Resultat 1-50 av 91
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anney, Richard, et al. (författare)
  • A genome-wide scan for common alleles affecting risk for autism.
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:20, s. 4072-4082
  • Tidskriftsartikel (refereegranskat)abstract
    • Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
  •  
2.
  • Anney, Richard, et al. (författare)
  • Individual common variants exert weak effects on the risk for autism spectrum disorders.
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:21, s. 4781-92
  • Tidskriftsartikel (refereegranskat)abstract
    • While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASD), the contribution of common variation to ASD risk is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating association of individual SNPs, we also sought evidence that common variants, en masse, might affect risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest p-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. By contrast, allele-scores derived from the transmission of common alleles to Stage 1 cases significantly predict case-status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele-score results, it is reasonable to conclude that common variants affect ASD risk but their individual effects are modest.
  •  
3.
  • Baird, Emily, et al. (författare)
  • A universal strategy for visually guided landing.
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:46, s. 18686-18691
  • Tidskriftsartikel (refereegranskat)abstract
    • Landing is a challenging aspect of flight because, to land safely, speed must be decreased to a value close to zero at touchdown. The mechanisms by which animals achieve this remain unclear. When landing on horizontal surfaces, honey bees control their speed by holding constant the rate of front-to-back image motion (optic flow) generated by the surface as they reduce altitude. As inclination increases, however, this simple pattern of optic flow becomes increasingly complex. How do honey bees control speed when landing on surfaces that have different orientations? To answer this, we analyze the trajectories of honey bees landing on a vertical surface that produces various patterns of motion. We find that landing honey bees control their speed by holding the rate of expansion of the image constant. We then test and confirm this hypothesis rigorously by analyzing landings when the apparent rate of expansion generated by the surface is manipulated artificially. This strategy ensures that speed is reduced, gradually and automatically, as the surface is approached. We then develop a mathematical model of this strategy and show that it can effectively be used to guide smooth landings on surfaces of any orientation, including horizontal surfaces. This biological strategy for guiding landings does not require knowledge about either the distance to the surface or the speed at which it is approached. The simplicity and generality of this landing strategy suggests that it is likely to be exploited by other flying animals and makes it ideal for implementation in the guidance systems of flying robots.
  •  
4.
  • Baird, Emily, et al. (författare)
  • Bearing selection in ball-rolling dung beetles: is it constant?
  • 2010
  • Ingår i: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. - : Springer Science and Business Media LLC. - 1432-1351. ; 196, s. 801-806
  • Tidskriftsartikel (refereegranskat)abstract
    • Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.
  •  
5.
  • Baird, Emily, et al. (författare)
  • Finding the gap : A brightness-based strategy for guidance in cluttered environments
  • 2016
  • Ingår i: Royal Society of London. Proceedings B. Biological Sciences. - : The Royal Society. - 0962-8452. ; 283:1828
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to move safely between obstacles is critical for animals that fly rapidly through cluttered environments but surprisingly little is known about how they achieve this. Do they reactively avoid obstacles or do they instead fly towards the gaps between them? If they aim towards gaps, what information do they use to detect and fly through them? Here, we aim to answer these questions by presenting orchid bees with different apertures. When negotiating gaps, orchid bees locate and fly close to the point that gives themgreatest clearance from the edges. The cue that they use to pinpoint this spot is the brightness gradient formed across the aperture. Furthermore, we find that orchid bees also rely on brightness cues to locate gaps that are sufficiently large to negotiate safely. The advantage of using brightness for locating and negotiating gaps in a cluttered environment is that it provides information about the safest path through obstacles, at least in a forest environment. This brightness-based guidance strategy for gap detection and negotiation represents a fast, computationally simple and efficient mechanism to identify the clearest path through a forest and is, therefore, likely to represent a more general mechanism used by other animals.
  •  
6.
  • Baird, Emily, et al. (författare)
  • Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity.
  • 2015
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion-a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus.
  •  
7.
  • Baird, Emily, et al. (författare)
  • Minimum viewing angle for visually guided ground speed control in bumblebees.
  • 2010
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 1477-9145 .- 0022-0949. ; 213:10, s. 1625-1632
  • Tidskriftsartikel (refereegranskat)abstract
    • To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.
  •  
8.
  • Baird, Emily, et al. (författare)
  • Nocturnal insects use optic flow for flight control.
  • 2011
  • Ingår i: Biology letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 7, s. 499-501
  • Tidskriftsartikel (refereegranskat)abstract
    • To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects.
  •  
9.
  • Baird, Emily (författare)
  • Obstacle avoidance in bumblebees is robust to changes in light intensity
  • 2020
  • Ingår i: Animal Cognition. - : Springer Science and Business Media LLC. - 1435-9448 .- 1435-9456. ; 23, s. 1081-1086
  • Tidskriftsartikel (refereegranskat)abstract
    • Flying safely and avoiding obstacles in low light is crucial for the bumblebees that forage around dawn and dusk. Previous work has shown that bumblebees overcome the limitations of their visual system-typically adapted for bright sunlight-by increasing the time over which they sample photons. While this improves visual sensitivity, it decreases their capacity to resolve fast motion. This study investigates what effect this has on obstacle avoidance in flight, a task that requires the bees to reliably detect obstacles in the frontal visual field and to make a timely diversion to their flight path. In both bright and dim light, bumblebees avoided the 5 cm diameter obstacle at a consistent distance (22 cm) although in dim light they approached it more slowly from a distance of at least at least 80 cm. This suggests that bumblebees have an effective strategy for avoiding obstacles in all light conditions under which they are naturally active, and it is hypothesised that this is based on a time-to-contact prediction.
  •  
10.
  • Baird, Emily, et al. (författare)
  • The dung beetle dance: an orientation behaviour?
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic "dance," in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path.
  •  
11.
  • Baird, Emily, et al. (författare)
  • The effect of optic flow cues on honeybee flight control in wind
  • 2021
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 288:1943
  • Tidskriftsartikel (refereegranskat)abstract
    • To minimize the risk of colliding with the ground or other obstacles, flying animals need to control both their ground speed and ground height. This task is particularly challenging in wind, where head winds require an animal to increase its airspeed to maintain a constant ground speed and tail winds may generate negative airspeeds, rendering flight more difficult to control. In this study, we investigate how head and tail winds affect flight control in the honeybee Apis mellifera, which is known to rely on the pattern of visual motion generated across the eye-known as optic flow-to maintain constant ground speeds and heights. We find that, when provided with both longitudinal and transverse optic flow cues (in or perpendicular to the direction of flight, respectively), honeybees maintain a constant ground speed but fly lower in head winds and higher in tail winds, a response that is also observed when longitudinal optic flow cues are minimized. When the transverse component of optic flow is minimized, or when all optic flow cues are minimized, the effect of wind on ground height is abolished. We propose that the regular sidewards oscillations that the bees make as they fly may be used to extract information about the distance to the ground, independently of the longitudinal optic flow that they use for ground speed control. This computationally simple strategy could have potential uses in the development of lightweight and robust systems for guiding autonomous flying vehicles in natural environments.
  •  
12.
  • Baird, Emily, et al. (författare)
  • The neuroecology of bee flight behaviours
  • 2020
  • Ingår i: Current Opinion in Insect Science. - : Elsevier BV. - 2214-5745 .- 2214-5753. ; 42, s. 8-13
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining functional, ecological and evolutionary perspectives, neuroecology can provide key insights into understanding how behaviour and the underlying sensory and neural processes are shaped by ecology and evolutionary history. Bees are an ideal system for neuroecological studies because they represent a numerous and diverse insect group that inhabit a broad range of environments. Flight is central to the evolutionary success of bees and is the key to their survival and fitness but this review of recent work on fundamental flight behaviours in different species - landing, collision avoidance and speed control - reveals striking differences. We discuss the potential ecological and evolutionary drivers behind this variation but argue that to understand their adaptive value future work should include multidisciplinary approaches that integrate neuroscience, ecology, phylogeny and behaviour.
  •  
13.
  • Baird, Emily, et al. (författare)
  • Visual flight control in naturalistic and artificial environments.
  • 2012
  • Ingår i: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. - : Springer Science and Business Media LLC. - 1432-1351. ; 198:12, s. 869-876
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the visual flight control strategies of flying insects have evolved to cope with the complexity of the natural world, studies investigating this behaviour have typically been performed indoors using simplified two-dimensional artificial visual stimuli. How well do the results from these studies reflect the natural behaviour of flying insects considering the radical differences in contrast, spatial composition, colour and dimensionality between these visual environments? Here, we aim to answer this question by investigating the effect of three- and two-dimensional naturalistic and artificial scenes on bumblebee flight control in an outdoor setting and compare the results with those of similar experiments performed in an indoor setting. In particular, we focus on investigating the effect of axial (front-to-back) visual motion cues on ground speed and centring behaviour. Our results suggest that, in general, ground speed control and centring behaviour in bumblebees is not affected by whether the visual scene is two- or three dimensional, naturalistic or artificial, or whether the experiment is conducted indoors or outdoors. The only effect that we observe between naturalistic and artificial scenes on flight control is that when the visual scene is three-dimensional and the visual information on the floor is minimised, bumblebees fly further from the midline of the tunnel. The findings presented here have implications not only for understanding the mechanisms of visual flight control in bumblebees, but also for the results of past and future investigations into visually guided flight control in other insects.
  •  
14.
  • Baird, Emily, et al. (författare)
  • X-ray micro computed-tomography
  • 2017
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822. ; 27:8, s. 289-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Emily Baird and Gavin Taylor describe how you can make three-dimensional models of biological samples using x-ray micro-computed tomography
  •  
15.
  • Bartholomée, Océane, et al. (författare)
  • Shining a light on bumblebee foraging strategies: bumblebee species niche partitioning is related to visual sensory traits
  • 2023
  • Ingår i: Proceedings of the Royal Society B: Biological Sciences. - 1471-2954. ; 290:1996
  • Tidskriftsartikel (refereegranskat)abstract
    • Local coexistence of bees has been explained by flower resource partitioning, but coexisting bumblebee species often have strongly overlapping diets. We investigated if light microhabitat niche separation, underpinned by visual traits, could serve as an alternative mechanism underlying local coexistence of bumblebee species. To this end, we focused on a homogeneous flower resource—bilberry—in a heterogeneous light environment—hemi-boreal forests. We found that bumblebee communities segregated along a gradient of light intensity. The community-weighted mean of the eye parameter—a metric measuring the compromise between light sensitivity and visual resolution—decreased with light intensity, showing a higher investment in light sensitivity of communities observed in darker conditions. This pattern was consistent at the species level. In general, species with higher eye parameter (larger investment in light sensitivity) foraged in dimmer light than those with a lower eye parameter (higher investment in visual resolution). Moreover, species realized niche optimum was linearly related to their eye parameter. These results suggest microhabitat niche partitioning to be a potential mechanism underpinning bumblebee species coexistence. This study highlights the importance of considering sensory traits when studying pollinator habitat use and their ability to cope with changing environments.
  •  
16.
  • Bartholomée, Océane, et al. (författare)
  • Shining a light on species coexistence : visual traits drive bumblebee communities
  • 2023
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - 0962-8452 .- 1471-2954. ; 290:1996
  • Tidskriftsartikel (refereegranskat)abstract
    • Local coexistence of bees has been explained by flower resource partitioning, but coexisting bumblebee species often have strongly overlapping diets. We investigated if light microhabitat niche separation, underpinned by visual traits, could serve as an alternative mechanism underlying local coexistence of bumblebee species. To this end, we focused on a homogeneous flower resource—bilberry—in a heterogeneous light environment—hemi-boreal forests. We found that bumblebee communities segregated along a gradient of light intensity. The community-weighted mean of the eye parameter—a metric measuring the compromise between light sensitivity and visual resolution—decreased with light intensity, showing a higher investment in light sensitivity of communities observed in darker conditions. This pattern was consistent at the species level. In general, species with higher eye parameter (larger investment in light sensitivity) foraged in dimmer light than those with a lower eye parameter (higher investment in visual resolution). Moreover, species realized niche optimum was linearly related to their eye parameter. These results suggest microhabitat niche partitioning to be a potential mechanism underpinning bumblebee species coexistence. This study highlights the importance of considering sensory traits when studying pollinator habitat use and their ability to cope with changing environments. 
  •  
17.
  • Bijma, Nienke N., et al. (författare)
  • The effect of surface topography on the ball-rolling ability of Kheper lamarcki (Scarabaeidae)
  • 2024
  • Ingår i: The Journal of experimental biology. - 1477-9145 .- 0022-0949. ; 227:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The most effective way to avoid intense inter- and intra-specific competition at the dung source, and to increase the distance to the other competitors, is to follow a single straight bearing. While ball-rolling dung beetles manage to roll their dung balls along nearly perfect straight paths when traversing flat terrain, the paths that they take when traversing more complex (natural) terrain are not well understood. In this study, we investigate the effect of complex surface topographies on the ball-rolling ability of Kheper lamarcki. Our results reveal that ball-rolling trajectories are strongly influenced by the characteristic scale of the surface structure. Surfaces with an increasing similarity between the average distance of elevations and the ball radius cause progressively more difficulties during ball transportation. The most important factor causing difficulties in ball transportation appears to be the slope of the substrate. Our results show that, on surfaces with a slope of 7.5 deg, more than 60% of the dung beetles lose control of their ball. Although dung beetles still successfully roll their dung ball against the slope on such inclinations, their ability to roll the dung ball sideways diminishes. However, dung beetles do not seem to adapt their path on inclines such that they roll their ball in the direction against the slope. We conclude that dung beetles strive for a straight trajectory away from the dung pile, and that their actual path is the result of adaptations to particular surface topographies.
  •  
18.
  • Chakravarthi, Aravin, et al. (författare)
  • Differences in spatial resolution and contrast sensitivity of flight control in the honeybees Apis cerana and Apis mellifera
  • 2018
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 221:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Visually guided behaviour is constrained by the capacity of the visual system to resolve detail. This, in turn, is limited by the spatial resolution and contrast sensitivity of the underlying visual system. Because these properties are interdependent and vary nonuniformly, it is only possible to fully understand the limits of a specific visually guided behaviour when they are investigated in combination. To understand the visual limits of flight control in bees, which rely heavily on vision to control flight, and to explore whether they vary between species, we tested how changes in spatial resolution and contrast sensitivity affect the speed and position control of the Asian and European honeybees (Apis cerana and Apis mellifera). Despite the apparent similarity of these species, we found some interesting and surprising differences between their visual limits. While the effect of spatial frequency and contrast on position control is similar between the species, ground speed is differently affected by these variables. A comparison with published data from the bumblebee Bombus terrestris revealed further differences. The visual resolution that limits the detection and use of optic flow for flight control in both species of honeybee is lower than the previously anatomically determined resolution and differs from object detection limits of A. mellifera, providing evidence that the limits of spatial resolution and contrast sensitivity are highly tuned to the particular behavioural task of a species.
  •  
19.
  • Chakravarthi, Aravin, et al. (författare)
  • High contrast sensitivity for visually guided flight control in bumblebees
  • 2017
  • Ingår i: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. - : Springer Science and Business Media LLC. - 1432-1351. ; 203:12, s. 999-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg−1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.
  •  
20.
  • Chakravarthi, Aravin, et al. (författare)
  • How well can bees see the world?
  • 2016
  • Ingår i: Navigation News. - 0268-6317. ; MAR/APR 2016, s. 10-10
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
21.
  • Chakravarthi, Aravin, et al. (författare)
  • Spatial Vision in Bombus terrestris.
  • 2016
  • Ingår i: Frontiers in Behavioral Neuroscience. - : Frontiers Media SA. - 1662-5153. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg(-1) of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana) and another bumblebee species (B. impatiens). We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.090 cycles deg(-1) and 1.26 for 0.18 cycles deg(-1).
  •  
22.
  • Dacke, Marie, et al. (författare)
  • A dung beetle that path integrates without the use of landmarks
  • 2020
  • Ingår i: Animal Cognition. - : Springer Science and Business Media LLC. - 1435-9448 .- 1435-9456. ; 23, s. 1161-1175
  • Tidskriftsartikel (refereegranskat)abstract
    • Unusual amongst dung beetles,Scarabaeus galenusdigs a burrow that it provisions by making repeated trips to a nearby dung pile. Even more remarkable is that these beetles return home moving backwards, with a pellet of dung between their hind legs. Here, we explore the strategy thatS. galenususes to find its way home. We find that, like many other insects, they use path integration to calculate the direction and distance to their home. If they fail to locate their burrow, the beetles initiate a distinct looping search behaviour that starts with a characteristic sharp turn, we have called a 'turning point'. When homing beetles are passively displaced or transferred to an unfamiliar environment, they initiate a search at a point very close to the location of their fictive burrow-that is, a spot at the same relative distance and direction from the pick-up point as the original burrow. Unlike other insects,S. galenusdo not appear to supplement estimates of the burrow location with landmark information. Thus,S. galenusrepresents a rare case of a consistently backward-homing animal that does not use landmarks to augment its path integration strategy.
  •  
23.
  • Dacke, Marie, et al. (författare)
  • Dung beetles ignore landmarks for straight-line orientation
  • 2012
  • Ingår i: Journal of Comparative Physiology A. - : Springer Science and Business Media LLC. - 1432-1351 .- 0340-7594. ; 199, s. 17-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon locating a suitable dung pile, ball-rolling dung beetles shape a piece of dung into a ball and roll it away in a straight line. This guarantees that they will not return to the dung pile, where they risk having their ball stolen by other beetles. Dung beetles are known to use celestial compass cues such as the sun, the moon and the pattern of polarised light formed around these light sources to roll their balls of dung along straight paths. Here, we investigate whether terrestrial landmarks have any influence on straight-line orientation in dung beetles. We find that the removal or re-arrangement of landmarks has no effect on the beetle’s orientation precision. Celestial compass cues dominate straight-line orientation in dung beetles so strongly that, under heavily overcast conditions or when prevented from seeing the sky, the beetles can no longer orient along straight paths. To our knowledge, this is the only animal with a visual compass system that ignores the extra orientation precision that landmarks can offer.
  •  
24.
  • Dacke, Marie, et al. (författare)
  • Dung Beetles Use the Milky Way for Orientation
  • 2013
  • Ingår i: Current Biology. - : Elsevier BV. - 1879-0445 .- 0960-9822. ; 23:4, s. 298-300
  • Tidskriftsartikel (refereegranskat)abstract
    • When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds [1, 2], seals [3], and humans [4] are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile [5-9]. Even on clear moonless nights, many beetles still manage to orientate along straight paths [5]. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates [10], spiders [11], and insects [5, 12], but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom.
  •  
25.
  • Dacke, Marie, et al. (författare)
  • How dim is dim? Precision of the celestial compass in moonlight and sunlight.
  • 2011
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 366:1565, s. 697-702
  • Tidskriftsartikel (refereegranskat)abstract
    • Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dim-and the polarization pattern too weak-to provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision.
  •  
26.
  • Dacke, Marie, et al. (författare)
  • How Dung Beetles Steer Straight
  • 2021
  • Ingår i: Annual Review of Entomology. - : Annual Reviews. - 0066-4170 .- 1545-4487. ; 66, s. 243-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Distant and predictable features in the environment make ideal compass cues to allow movement along a straight path. Ball-rolling dung beetles use a wide range of different signals in the day or night sky to steer themselves along a fixed bearing. These include the sun, the Milky Way, and the polarization pattern generated by the moon. Almost two decades of research into these remarkable creatures have shown that the dung beetle's compass is flexible and readily adapts to the cues available in its current surroundings. In the morning and afternoon, dung beetles use the sun to orient, but at midday, they prefer to use the wind, and at night or in a forest, they rely primarily on polarized skylight to maintain straight paths. We are just starting to understand the neuronal substrate underlying the dung beetle's compass and the mystery of why these beetles start each journey with a dance.
  •  
27.
  • Dacke, Marie, et al. (författare)
  • Multimodal cue integration in the dung beetle compass
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:28, s. 14248-14253
  • Tidskriftsartikel (refereegranskat)abstract
    • South African ball-rolling dung beetles exhibit a unique orientation behavior to avoid competition for food: after forming a piece of dung into a ball, they efficiently escape with it from the dung pile along a straight-line path. To keep track of their heading, these animals use celestial cues, such as the sun, as an orientation reference. Here we show that wind can also be used as a guiding cue for the ball-rolling beetles. We demonstrate that this mechanosensory compass cue is only used when skylight cues are difficult to read, i.e., when the sun is close to the zenith. This raises the question of how the beetles combine multimodal orientation input to obtain a robust heading estimate. To study this, we performed behavioral experiments in a tightly controlled indoor arena. This revealed that the beetles register directional information provided by the sun and the wind and can use them in a weighted manner. Moreover, the directional information can be transferred between these 2 sensory modalities, suggesting that they are combined in the spatial memory network in the beetle's brain. This flexible use of compass cue preferences relative to the prevailing visual and mechanosensory scenery provides a simple, yet effective, mechanism for enabling precise compass orientation at any time of the day.
  •  
28.
  • Dacke, Marie, et al. (författare)
  • The role of the sun in the celestial compass of dung beetles.
  • 2014
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 369:1636
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day.
  •  
29.
  • Dominoni, Davide M., et al. (författare)
  • Why conservation biology can benefit from sensory ecology
  • 2020
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 4:4, s. 502-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic sensory pollutants, such as noise, light and chemicals, are affecting biodiversity. This Perspective uses an understanding of animal sensory ecology to explore how these impacts can be mitigated. Global expansion of human activities is associated with the introduction of novel stimuli, such as anthropogenic noise, artificial lights and chemical agents. Progress in documenting the ecological effects of sensory pollutants is weakened by sparse knowledge of the mechanisms underlying these effects. This severely limits our capacity to devise mitigation measures. Here, we integrate knowledge of animal sensory ecology, physiology and life history to articulate three perceptual mechanisms-masking, distracting and misleading-that clearly explain how and why anthropogenic sensory pollutants impact organisms. We then link these three mechanisms to ecological consequences and discuss their implications for conservation. We argue that this framework can reveal the presence of 'sensory danger zones', hotspots of conservation concern where sensory pollutants overlap in space and time with an organism's activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants. Future research that applies this framework will provide critical insight to preserve the natural sensory world.
  •  
30.
  • El Jundi, Basil, et al. (författare)
  • A snapshot-based mechanism for celestial orientation
  • 2016
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822. ; 26
  • Tidskriftsartikel (refereegranskat)abstract
    • n order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2, 3, 4, 5, 6, 7 and 8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9 and 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a “celestial snapshot,” even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the “dance,” a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation.
  •  
31.
  • el Jundi, Basil, et al. (författare)
  • Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation.
  • 2014
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 1477-9145 .- 0022-0949. ; 217:13, s. 2422-2429
  • Tidskriftsartikel (refereegranskat)abstract
    • To escape competition at the dung pile, a ball-rolling dung beetle forms a piece of dung into a ball and rolls it away. To ensure an their efficient escape from the dung pile, the beetles rely on a celestial compass to move along a straight paths. Here, we analyzed the reliability of different skylight cues for this compass and found that dung beetles rely not only on the sun, but also on the skylight polarization pattern. Moreover, we show the first evidence of an insect using the celestial light intensity gradient for orientation. Using a polarizer, we manipulated skylight so that the polarization pattern appeared to turn by 90°. The beetles then changed their bearing close to the expected 90°. This behavior was abolished if the sun was visible to the beetle, suggesting that polarized light is hierarchically subordinate to the sun. If the sky was depolarized and the sun was invisible, the beetles could still move along straight paths. We therefore analyzed the use of the celestial intensity gradient for orientation. Artificially rotating the intensity pattern by 180° caused beetles to orient in the opposite direction. The intensity cue was also found to be subordinate to the sun, and could play a role in disambiguating the polarization signal, especially at low sun elevations.
  •  
32.
  • el Jundi, Basil, et al. (författare)
  • Neural coding underlying the cue preference for celestial orientation
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 112:36, s. 11395-11400
  • Tidskriftsartikel (refereegranskat)abstract
    • Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.
  •  
33.
  • el Jundi, Basil, et al. (författare)
  • Spectral information as an orientation cue in dung beetles
  • 2015
  • Ingår i: Biology letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation.
  •  
34.
  • El Jundi, Basil, et al. (författare)
  • The brain behind straight-line orientation in dung beetles
  • 2019
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 222
  • Forskningsöversikt (refereegranskat)abstract
    • For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
  •  
35.
  • Foster, James J., et al. (författare)
  • Light pollution forces a change in dung beetle orientation behavior
  • 2021
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 31:17, s. 3-3942
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing global light pollution1,2 threatens the night-time darkness to which most animals are adapted. Light pollution can have detrimental effects on behavior,3–5 including by disrupting the journeys of migratory birds,5,6 sand hoppers,7–9 and moths.10 This is particularly concerning, since many night-active species rely on compass information in the sky, including the moon,11,12 the skylight polarization pattern,13,14 and the stars,15 to hold their course. Even animals not directly exposed to streetlights and illuminated buildings may still experience indirect light pollution in the form of skyglow,3,4 which can extend far beyond urban areas.1,2 While some recent research used simulated light pollution to estimate how skyglow may affect orientation behavior,7–9 the consequences of authentic light pollution for celestial orientation have so far been neglected. Here, we present the results of behavioral experiments at light-polluted and dark-sky sites paired with photographic measurements of each environment. We find that light pollution obscures natural celestial cues and induces dramatic changes in dung beetle orientation behavior, forcing them to rely on bright earthbound beacons in place of their celestial compass. This change in behavior results in attraction toward artificial lights, thereby increasing inter-individual competition and reducing dispersal efficiency. For the many other species of insect, bird, and mammal that rely on the night sky for orientation and migration, these effects could dramatically hinder their vital night-time journeys.
  •  
36.
  • Foster, James J., et al. (författare)
  • Orienting to polarized light at night - matching lunar skylight to performance in a nocturnal beetle
  • 2019
  • Ingår i: The Journal of experimental biology. - : The Company of Biologists. - 1477-9145 .- 0022-0949. ; 222
  • Tidskriftsartikel (refereegranskat)abstract
    • For polarized light to inform behaviour, the typical range of degrees of polarization observable in the animal's natural environment must be above the threshold for detection and interpretation. Here, we present the first investigation of the degree of linear polarization threshold for orientation behaviour in a nocturnal species, with specific reference to the range of degrees of polarization measured in the night sky. An effect of lunar phase on the degree of polarization of skylight was found, with smaller illuminated fractions of the moon's surface corresponding to lower degrees of polarization in the night sky. We found that the South African dung beetle Escarabaeus satyrus can orient to polarized light for a range of degrees of polarization similar to that observed in diurnal insects, reaching a lower threshold between 0.04 and 0.32, possibly as low as 0.11. For degrees of polarization lower than 0.23, as measured on a crescent moon night, orientation performance was considerably weaker than that observed for completely linearly polarized stimuli, but was nonetheless stronger than in the absence of polarized light.
  •  
37.
  • Gérard, Maxence, 1991-, et al. (författare)
  • Elevated developmental temperatures impact the size and allometry of morphological traits of the bumblebee Bombus terrestris
  • 2023
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 226:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of global warming on wild bee decline threatens the pollination services they provide. Exposure to temperatures above optimal during development is known to reduce adult body size but how it affects the development and scaling of body parts remains unclear. In bees, a reduction in body size and/or a reduction in body parts, such as the antennae, tongue and wings, and how they scale with body size (i.e. their allometry) could severely affect their fitness. To date, it remains unclear how temperature affects body size and the scaling of morphological traits in bees. To address this knowledge gap, we exposed both males and workers of Bombus terrestris to elevated temperature during development and assessed the effects on (i) the size of morphological traits and (ii) the allometry between these traits. Colonies were exposed to optimal (25°C) or stressful (33°C) temperatures. We then measured the body size, wing size, antenna and tongue length, as well as the allometry between these traits. We found that workers were smaller and the antennae of both castes were reduced at the higher temperature. However, tongue length and wing size were not affected by developmental temperature. The allometric scaling of the tongue was also affected by developmental temperature. Smaller body size and antennae could impair both individual and colony fitness, by affecting foraging efficiency and, consequently, colony development. Our results encourage further exploration of how the temperature-induced changes in morphology affect functional traits and pollination efficiency. 
  •  
38.
  • Gérard, Maxence, 1991-, et al. (författare)
  • Exposure to elevated temperature during development affects bumblebee foraging behavior
  • 2022
  • Ingår i: Behavioral Ecology. - : Oxford University Press (OUP). - 1045-2249 .- 1465-7279. ; 33:4, s. 816-824
  • Tidskriftsartikel (refereegranskat)abstract
    • Bee foraging behavior provides a pollination service that has both ecological and economic benefits. However, bee population decline could directly affect the efficiency of this interaction. Among the drivers of this decline, global warming has been implicated as an emerging threat but exactly how increasing temperatures affect bee foraging behavior remains unexplored. Here, we assessed how exposure to elevated temperatures during development affects the foraging behavior and morphology of workers from commercial and wild Bombus terrestris colonies. Workers reared at 33 °C had a higher visiting rate and shorter visiting time than those reared at 27°C. In addition, far fewer workers reared at 33 °C engaged in foraging activities and this is potentially related to the drastic reduction in the number of individuals produced in colonies exposed to 33 °C. The impact of elevated developmental temperature on wild colonies was even stronger as none of the workers from these colonies performed any foraging trips. We also found that rearing temperature affected wing size and shape. Our results provide the first evidence that colony temperature can have striking effects on bumblebee foraging behavior. Of particular importance is the drastic reduction in the number of workers performing foraging trips, and the total number of foraging trips made by workers reared in high temperatures. Further studies should explore if, ultimately, these observed effects of exposure to elevated temperature during development lead to a reduction in pollination efficiency.
  •  
39.
  • Gérard, Maxence, et al. (författare)
  • Impact of crop exposure and agricultural intensification on the phenotypic variation of bees
  • 2022
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 338
  • Tidskriftsartikel (refereegranskat)abstract
    • In a context of rapid global change, understanding how environmental stressors can impact phenotypic variation, and which phenotypic traits are predominantly affected can be particularly relevant. Indeed, potential phenotypic modifications could affect the functionality of traits from taxa that are in decline but that are keystone species in many ecosystems. In this study, we assessed the impact of environmental drivers and agricultural intensification on two crucial pollinator species: the honeybee (Apis mellifera) and the buff-tailed bumblebee (Bombus terrestris). Among eight countries representing four major European biogeographical regions [i.e., Boreal (Sweden and Estonia), Atlantic (Ireland and United Kingdom), Continental (Germany and Switzerland) and Mediterranean (Spain and Italy)] and two type of crops (i.e., apple orchards and oilseed rape) we assessed how landscape structure, latitude and pesticide management could impact their wing morphology. Two sampling sessions were conducted: the first one when the hives/nests were settled on the field (T0) and a second sampling session after the potential effect of agricultural intensification (T1). Using a dataset of more than 7238 wings, we measured the wing size, shape and asymmetry. We observed that, in several countries, a shift in most of the morphological traits occurred between T0 and T1. When focusing on the drivers of phenotypic variation in T1, the levels of significance for some potential drivers were sometimes high, while most of the variation remained unexplained. The latitude and, more rarely, grassland cover were found to partly explain the wing modifications. In light of these results, we conclude that phenotypic shifts can occur in a very short period, after encountering new field conditions. Further studies should be conducted to better understand which alternative drivers could explain morphological changes in the agro-ecosystem after crop exposition, as well as the potential consequences of these changes on foraging performance or pollination efficiency.
  •  
40.
  • Gérard, Maxence, 1991-, et al. (författare)
  • Resilience of bumblebee foraging behavior despite colony size reduction
  • 2023
  • Ingår i: Frontiers in insect science. - : Frontiers Media SA. - 2673-8600. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Foraging behavior is driven by diverse factors, notably life history traits. Foraging strategies are particularly complex among eusocial species such as bumblebees, because they depend primarily on the needs of the colony, rather than on individual's needs. Colony size, i.e. the number of workers in a colony vary a lot among eusocial insects. While a large colony can be adaptive, several drivers can strongly decrease colony size, like pesticides or high temperatures. In this study, we used the bumblebee Bombus terrestris to assess if workers adapted their foraging behavior to such rapid decreases in colony size. We conducted the foraging experiments with two plant species commonly used by bumblebees: Borago officinalis and Echium plantagineum. Several foraging parameters were measured: foraging time, number of foraging trips, number of workers foraging, handling time and visiting rate. Despite a drastic reduction in colony size, nearly all the foraging behavior parameters were unaffected by the colony size reduction. Colonies that were subject to a large decrease in workers instead displayed high resilience and behavioral plasticity by quickly increasing the proportion of foragers. Ultimately, further research should assess if this consistency in foraging behavior also allows bumblebee colonies to maintain both the efficiency of the resources collection and pollination.
  •  
41.
  • Gérard, Maxence, et al. (författare)
  • Short-term exposure to heatwave-like temperatures affects learning and memory in bumblebees
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:14, s. 4251-4259
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming has been identified as a key driver of bee declines around the world. While it is clear that elevated temperatures during the spring and summer months—the principal activity period of many bee species—is a factor in this decline, exactly how temperature affects bee survival is unknown. In vertebrates, there is clear evidence that elevated ambient temperatures impair cognition but whether and how heat affects the cognitive abilities of invertebrates remains unclear. Cognitive skills in bees are essential for their survival as, to supply the hive with nutrition, workers must be able to learn and remember the location of the most rewarding floral resources. Here, we investigate whether temperature-related cognitive impairments could be a driver of bee declines by exploring the effect of short-term increases in ambient temperature on learning and memory. We found that, in comparison to bees that were tested at 25°C (a temperature that they would typically experience in summer), bees that were exposed to 32°C (a temperature that they will becoming increasingly exposed to during heatwave events) were significantly worse at forming an association between a coloured light and a sucrose reward and that their capacity to remember this association after just 1 h was abolished. This study provides novel experimental evidence that even just a few hours of exposure to heatwave-like temperatures can severely impair the cognitive performance of insects. Such temperature-induced cognitive deficits could play an important role in explaining recent and future bee population declines.
  •  
42.
  • Goyal, Pulkit, et al. (författare)
  • Visual guidance of honeybees approaching a vertical landing surface
  • 2023
  • Ingår i: Journal of Experimental Biology. - 0022-0949 .- 1477-9145. ; 226:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Landing is a critical phase for flying animals, whereby many rely on visual cues to perform controlled touchdown. Foraging honeybees rely on regular landings on flowers to collect food crucial for colony survival and reproduction. Here, we explored how honeybees utilize optical expansion cues to regulate approach flight speed when landing on vertical surfaces. Three sensory-motor control models have been proposed for landings of natural flyers. Landing honeybees maintain a constant optical expansion rate set-point, resulting in a gradual decrease in approach velocity and gentile touchdown. Bumblebees exhibit a similar strategy, but they regularly switch to a new constant optical expansion rate set-point. In contrast, landing birds fly at a constant time to contact to achieve faster landings. Here, we re-examined the landing strategy of honeybees by fitting the three models to individual approach flights of honeybees landing on platforms with varying optical expansion cues. Surprisingly, the landing model identified in bumblebees proved to be the most suitable for these honeybees. This reveals that honeybees adjust their optical expansion rate in a stepwise manner. Bees flying at low optical expansion rates tend to increase their set-point stepwise, while those flying at high optical expansion rates tend to decrease it stepwise. This modular landing control system enables honeybees to land rapidly and reliably under a wide range of initial flight conditions and visual landing platform patterns. The remarkable similarity between the landing strategies of honeybees and bumblebees suggests that this may also be prevalent among other flying insects. Furthermore, these findings hold promising potential for bioinspired guidance systems in flying robots. 
  •  
43.
  • Grittner, Rebecca, et al. (författare)
  • Spatial tuning of translational optic flow responses in hawkmoths of varying body size
  • 2022
  • Ingår i: Journal of Comparative Physiology A. Sensory, neural, and behavioral physiology. - : Springer Science and Business Media LLC. - 0340-7594 .- 1432-1351. ; 208:2, s. 279-296
  • Tidskriftsartikel (refereegranskat)abstract
    • To safely navigate their environment, flying insects rely on visual cues, such as optic flow. Which cues insects can extract from their environment depends closely on the spatial and temporal response properties of their visual system. These in turn can vary between individuals that differ in body size. How optic flow-based flight control depends on the spatial structure of visual cues, and how this relationship scales with body size, has previously been investigated in insects with apposition compound eyes. Here, we characterised the visual flight control response limits and their relationship to body size in an insect with superposition compound eyes: the hummingbird hawkmoth Macroglossum stellatarum. We used the hawkmoths' centring response in a flight tunnel as a readout for their reception of translational optic flow stimuli of different spatial frequencies. We show that their responses cut off at different spatial frequencies when translational optic flow was presented on either one, or both tunnel walls. Combined with differences in flight speed, this suggests that their flight control was primarily limited by their temporal rather than spatial resolution. We also observed strong individual differences in flight performance, but no correlation between the spatial response cutoffs and body or eye size.
  •  
44.
  • Guiraud, Marie, et al. (författare)
  • Higher developmental temperature increases queen production and decreases worker body size in the bumblebee Bombus terrestris
  • 2021
  • Ingår i: Journal of Hymenoptera Research. - : Pensoft Publishers. - 1070-9428 .- 1314-2607. ; 88, s. 39-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and increasing average temperatures are now affecting most ecosystems. Social insects such as bumblebees are especially impacted because these changes create spatial, temporal and morphological mismatches that could impede their ability to find food resources and mate. However, few studies have assessed how the colony and life cycle are affected when temperatures rise above optimal rearing temperature. It has become imperative to understand how heat stress affects the life history traits of insect pollinators as well as how changes in life history interact with other traits like morphology. For example, a decrease in the number of foraging workers could be balanced by producing larger workers, able to forage at longer distances and gather more resources. Here, we investigated the impact of temperature on colony production and body size in the bumblebee Bombus terrestris. Colonies were exposed to two temperatures: 25 degrees C, which is around the optimal temperature for larval development and 33 degrees C, which is slightly above the set-point that is considered stressful for bumblebees. Although the production of males and workers wasn't significantly affected by these different temperatures, queen production and reproductive investment were much higher for colonies placed in 33 degrees C than in 25 degrees C. We also found that, in agreement with the temperature-size rule, workers were significantly smaller in the higher temperature. The decrease in worker body size could affect resource collection and pollination if their foraging distance and the quantity of food they are taking back to the colony decreases. While in our controlled conditions the bumblebees were fed ad libitum, the decrease of resource collection in field conditions could prevent colonies from producing as many queens as in our study. Together with the decrease of worker body size, our results suggest that elevated temperatures could ultimately have a negative impact on bumblebee colony fitness. Indeed, smaller workers are known to have weaker flight performance which could affect foraging performance and consequently colony development.
  •  
45.
  • Hill, Luke, et al. (författare)
  • Bumblebee cognitive abilities are robust to changes in colony size
  • 2023
  • Ingår i: Behavioral Ecology and Sociobiology. - : Springer Science and Business Media LLC. - 0340-5443 .- 1432-0762. ; 77:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Eusocial insect colonies act as a superorganism, which can improve their ability to buffer the negative impact of some anthropogenic stressors. However, this buffering effect can be affected by anthropogenic factors that reduce their colony size. A reduction in colony size is known to negatively affect several parameters like brood maintenance or thermoregulation, but the effects on behaviour and cognition have been largely overlooked. It remains unclear how a sudden change in group size, such as that which might be caused by anthropogenic stressors, affects individual behaviour within a colony. In this study, the bumblebee Bombus terrestris was used to study the effect of social group size on behaviour by comparing the associative learning capabilities of individuals from colonies that were unmanipulated, reduced to a normal size (a colony of 100 workers) or reduced to a critically low but functional size (a colony of 20 workers). The results demonstrated that workers from the different treatments performed equally well in associative learning tasks, which also included no significant differences in the learning capacity of workers that had fully developed after the colony size manipulation. Furthermore, we found that the size of workers had no impact on associative learning ability. The learning abilities of bumblebee workers were thus resilient to the colony reduction they encountered. Our study is a first step towards understanding how eusocial insect cognition can be impacted by drastic reductions in colony size. Significance statement While anthropogenic stressors can reduce the colony size of eusocial insects, the impact of this reduction is poorly studied, particularly among bumblebees. We hypothesised that colony size reduction would affect the cognitive capacity of worker bumblebees as a result of fewer social interactions or potential undernourishment. Using differential conditioning, we showed that drastic reductions in colony size have no effect on the associative learning capabilities of the bumblebee Bombus terrestris and that this was the same for individuals that were tested just after the colony reduction and individuals that fully developed under the colony size reduction. We also showed that body size did not affect learning capabilities. This resilience could be an efficient buffer against the ongoing impacts of global change.
  •  
46.
  • Jezeera, M. Asmi, et al. (författare)
  • Spatial resolution and sensitivity of the eyes of the stingless bee, Tetragonula iridipennis
  • 2022
  • Ingår i: Journal of Comparative Physiology A. Sensory, neural, and behavioral physiology. - : Springer Science and Business Media LLC. - 0340-7594 .- 1432-1351. ; 208:2, s. 225-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Stingless bees are important pollinators in the tropics. The tremendous variation in body size makes them an excellent group to study how miniaturization affects vision and visual behaviours. Using direct measurements and micro-CT, we reconstructed the eye structure, estimated anatomical spatial resolution and optical sensitivity of the stingless bee Tetragonula iridipennis. T. iridipennis is similar in size to the Australian stingless bee Tetragonula carbonaria and is smaller than honeybees. It has correspondingly small eyes (area = 0.56 mm2), few ommatidia (2451 ± 127), large inter-facet (3.0 ± 0.6°) and acceptance angles (2.8°). Theoretical estimates suggest that T. iridipennis has poorer spatial resolution (0.17 cycles degree−1) than honeybees, bumblebees, and T. carbonaria. Its optical sensitivity (0.08 µm2 sr), though higher than expected, is within the range of diurnal bees. This may provide them with greater contrast sensitivity, which is likely more relevant than the absolute sensitivity in this diurnal bee. Behaviourally determined detection thresholds for single targets using y-maze experiments were 11.5° for targets that provide chromatic contrast alone and 9.1° for targets providing chromatic and achromatic contrast. Further studies into microhabitat preferences and behaviour are required to understand how miniaturization influences its visual ecology.
  •  
47.
  • Jie, Vun Wen, 1994- (författare)
  • How the sensory ecology of the bumblebee affects their functional traits
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Morphological traits are important for trait-based ecological studies as they allow for the prediction of biodiversity across the biosphere. Currently, the predictive power of trait-based ecology is not often applied to terrestrial arthropods, even though they provide us with important agricultural, ecological, and cultural value. The aim of my PhD was to study how functional morphological traits of bumblebees are linked to different environmental factors.Overlooking intraspecifc variations of functional morphological traits in trait-based ecology is common and might lead to underestimation of adaptive capabilities in a species. In Chapter I, we used allometry to compare the scaling relationships of three different organs (compound eyes, wings, and antennae) among the size polymorphic workers of the buff-tailed bumblebee, Bombus terrestris. We used 12 colonies of which half developed at a sub-optimal elevated temperature (32°C, rather than 25°C). We found that each colony had a specific scaling profile for each organ and these differences could not be attributed to temperature stress. The variability in scaling among colonies suggests an intraspecific flexibility in investment in functional morphological traits.In Chapter II, I developed a method to estimate the size of the dorsal rim area (DRA), a specialized region in the compound eye of B. terrestris. The DRA has been greatly understudied due to the lack of easy and high-throughput methdods to study it. My method encompasses the use of 2D photography and micro-computed tomography (micro-CT) to determine the size of the DRA and the characteristics of its ommatidial structures. Using my method, I performed an allometric study on the scaling of DRA with body size in B.terrestris and found that crystalline cones of the DRA are significantly smaller compared to other regions of the eye.In Chapter III, I compared the visual systems (compound eyes, DRA, ocelli) in the workers of four different bumblebee species (B. jonellus, B. pratorum, B. hypnorum, and B. monticola). These species are found in different habitats and I found that this is reflected in their visual system investment. Species living in forests invested more in their visual systems compared to species found in open or open/forested environments. Our study suggests that habitat preference may indeed shape the visual system of different bumblebee species.Bumblebee species often occur sympatrically and we studied their co-existence in a hemiboreal forest with a limited variety of floral resources. Bumblebee species can avoid competition by foraging at different times of the day. To identify the traits that might allow this coexistence, we combined full-day monitoring of bumblebee communities with detailed functional trait measurements in Chapter IV. We found that temperature affected the presence and absence of species while light intensity affected the abundance of individuals and suggest that this pattern could be linked with visual and thermoregulatory traits.My combined findings show that bumblebees are an excellent model system for studying trait-environment relationships as they exhibit (i) intraspecific differences in traits, (ii) idiosyncrhatic and ubiquitous traits like the DRA, (iii) clear trait-environment relationships, and (iv) an example of how traits aid in the coexistence of similar species. 
  •  
48.
  • Jie, Vun Wen, et al. (författare)
  • Novel Methodology for Localizing and Studying Insect Dorsal Rim Area Morphology in 2D and 3D
  • 2023
  • Ingår i: Insects. - 2075-4450. ; 14:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Polarized light-based navigation in insects is facilitated by a polarization-sensitive part of the eye, the dorsal rim area (DRA). Existing methods to study the anatomy of the DRA are destructive and time-consuming. We presented a novel method for DRA localization, dissection, and measurement using 3D volumetric images from X-ray micro-computed tomography in combination with 2D photographs. Applying the method on size-polymorphic buff-tailed bumblebees, Bombus terrestris, we found that the DRA was easily obtainable from photographs of the dorsal eye region. Allometric analysis of the DRA in relation to body size in B. terrestris showed that it increased with the body size but not at the same rate. By localizing the DRA of individual bumblebees, we could also perform individual-level descriptions and inter-individual comparisons between the ommatidial structures (lens, crystalline cones, rhabdoms) of three different eye regions (DRA, non-DRA, proximate to DRA). One feature distinct to the bumblebee DRA was the smaller dimension of the crystalline cones in comparison to other regions of the eye. Using our novel methodology, we provide the first individual-level description of DRA ommatidial features and a comparison of how the DRA varies with body size in bumblebees.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 91
Typ av publikation
tidskriftsartikel (82)
annan publikation (4)
doktorsavhandling (3)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (82)
övrigt vetenskapligt/konstnärligt (8)
populärvet., debatt m.m. (1)
Författare/redaktör
Dacke, Marie (44)
Warrant, Eric (13)
Gillberg, Christophe ... (4)
Leboyer, Marion (4)
Anney, Richard (4)
Klei, Lambertus (4)
visa fler...
Pinto, Dalila (4)
Regan, Regina (4)
Conroy, Judith (4)
Magalhaes, Tiago R (4)
Pagnamenta, Alistair ... (4)
Almeida, Joana (4)
Bacchelli, Elena (4)
Bailey, Anthony J (4)
Baird, Gillian (4)
Battaglia, Agatino (4)
Bolshakova, Nadia (4)
Bolton, Patrick F. (4)
Bourgeron, Thomas (4)
Brennan, Sean (4)
Crawford, Emily L (4)
Dawson, Geraldine (4)
Delorme, Richard (4)
Duketis, Eftichia (4)
Duque, Frederico (4)
Fernandez, Bridget A (4)
Folstein, Susan E (4)
Freitag, Christine M (4)
Gilbert, John (4)
Green, Jonathan (4)
Hakonarson, Hakon (4)
Holt, Richard (4)
Howe, Jennifer L (4)
Klauck, Sabine M (4)
Kolevzon, Alexander (4)
Lord, Catherine (4)
Maestrini, Elena (4)
Merikangas, Alison (4)
Oliveira, Guiomar (4)
Parr, Jeremy R (4)
Poustka, Fritz (4)
Roberts, Wendy (4)
Roge, Bernadette (4)
Soorya, Latha (4)
Thomson, Susanne (4)
Tryfon, Ana (4)
Van Engeland, Herman (4)
Wallace, Simon (4)
Wing, Kirsty (4)
Wittemeyer, Kerstin (4)
visa färre...
Lärosäte
Lunds universitet (61)
Stockholms universitet (46)
Göteborgs universitet (4)
Kungliga Tekniska Högskolan (3)
Uppsala universitet (1)
Örebro universitet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (91)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (84)
Medicin och hälsovetenskap (7)
Teknik (2)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy